Refine Your Search




Search Results

Technical Paper

When to Integrate or Not to Integrate - A VVA System Decision

Virtually all production engines today have some level of electronic control. As features have been added over the years, some of these Electronic Control Units (ECU's) have grown significantly in complexity, size and cost. As Variable Valve Actuation (VVA) systems evolve from simple, mechanically operated systems such as cam phasers to full VVA systems, electronic systems will also need to evolve to control them. This evolutionary path forces many system-level questions to be considered. Some global questions that will need to be considered as the industry continue on this path, are: “What is the optimal level of electronics integration?” “At what point should a distributed engine control system be considered?” There are several key points that need to be considered to properly make these decisions, many of which will be addressed in this paper. A process for how these decisions might be made for a given system will be discussed.
Technical Paper

Where Are All Those Gadgets Going?

With the passage of the federal Clean Air Act, the automotive industry has a clear assignment to reduce automobile emissions drastically by 1975. The control devices presently available have already reduced hydrocarbons 83%, carbon monoxide 70%, and nitrogen oxides 33%. By 1975, these figures must be 98%, 97%, and 90%, respectively. This paper discusses the devices that have been developed to accomplish the reductions to date, and concludes that in the future the crankcase controls will require little change, that the evaporative controls will require some additional improvement but will not change substantially, and that engine modifications do not have much chance of meeting the 1975 standards without a great deal of supplementation. The author feels two methods are available which may be able to reach the 1975 standards: use of manifold reactors and use of catalysts. However, both present problems of materials and thermodynamics, due to high exhaust temperatures.
Journal Article

Whirl of Crankshaft Rear End, Part 2: an L4-Cylinder Diesel Engine

Since the sizes of the flywheel and clutch have been enlarged due to downsizing of diesel engines, the mass and moment of inertia at the crankshaft rear end have increased. Consequently, the serious bending stresses have appeared in the crankshaft rear. This paper describes the characteristics of those serious bending stresses, based on the mechanism for whirl resonance. The whirl resonance is largely impacted by the mass of the flywheel and clutch and by the distance from the crank-journal center of the rear end to the center of gravity of the flywheel and clutch.
Journal Article

Whirl of Crankshaft Rear End, Part1: an L6-Cylinder Diesel Engine

As the issue of global warming has become more serious, needs for downsizing or weight saving of an engine has been getting stronger, and forces exerted on engine parts, especially force on a crankshaft, have been getting larger and larger. In addition, since a crankshaft is a heavy engine part, needs for saving weight have been getting stronger and stronger. Therefore, determining the mechanism of high stress generation in a crankshaft system is urgently needed. This paper describes the characteristics and mechanism of a severe bending stress caused by the whirl of crankshaft rear end of an inline 6-cylinder medium-duty diesel engine. The authors measured bending stress on the fillets of the crankshaft, and found severe levels of sharp peaks in the stress curves for the crankshaft rear. To figure out why the severe levels of sharp peaks appear, they analyzed and studied the measured data.
Technical Paper

Whirling of a Four-Cylinder Engine Crankshaft

A John Deere Model 3010 Engine, a 4-cyl, three-main-bearing, four-stroke Otto-cycle in-line engine, was used in tests measuring crankshaft strains and the deviation of flywheel motion from plane rotation about the axial centerline of the main bearing bores. The crankshaft was run with a 50 lbf and a 127 lbf flywheel at 0.006 in. and 0.008 in. diametral main-bearing clearance over a range of 2000 rpm to 3000 rpm engine speed under no-load conditions. The flywheel exhibited a first-order, forward whirl for all test conditions. Crankshaft stresses were not significantly affected by either the flywheel mass or the main-bearing clearances.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

Why Not 125 BMEP in an L-Head Truck Engine?

HIGH output per cubic inch of piston displacement is desirable not alone for the purpose of being able to transport more payload faster, but more particularly for the invariably associated byproduct of lower specific fuel consumption, and especially at road-load requirements. The only way of accomplishing this purpose is through the use of higher compression ratios, and the limiting factors for this objective are fuel distribution and the operating temperatures of the component parts. A manifold is proposed which not only definitely improves distribution at both full and road loads, but has the inherent additional advantage of reducing the formation of condensate, thus still further facilitating a reduction in road-load specific fuel consumption. Hydraulic valve lifters, obviation of mechanical and thermal distortion, and controlled water flow are the essentials in improved cooling.
Technical Paper

Why Not Convert to Ductile Iron?

Cast iron is generally thought of as a weak, dirty, cheap, brittle material that does not have a place in applications requiring high strength and defined engineering properties. While gray cast iron is relatively brittle by comparison with steel, ductile iron is not. In fact, ductile iron has strengths and toughness very similar to steel and the machinability advantages make an attractive opportunity for significant cost reductions. Gray and ductile iron bar stock is commercially available and can be used as a direct replacement in applications that are currently being made from carbon steel bar. Ductile iron bar stock conversions are very prevalent in many fluid power applications including glands and rod guides, cylinders, hydrostatic transmission barrels and in high-pressure manifolds. Automotive gears are being converted to ductile iron for its damping capacity and cost reductions.
Technical Paper

Why are NCI Pistons Not Used in Heavy Duty Diesel Engines?

In order to meet the strict exhaust emission legislation and customer's requirements of high power, heavy-duty diesel engines have to have a higher peak firing pressure and higher thermal load recently. It causes serious influence on the reliability and durability of the engines and engine parts, pistons in particular. The pistons for the next generation heavy-duty diesel engines are required to withstand more than 20 MPa of the peak firing pressure and higher thermal load, productivity of course. Nodular cast iron (NCI) pistons are one of the answers that could satisfy the requirements mentioned above. It is well known that NCI pistons have a lot of advantages but not popular. The difficulty of the casting technology and the quality control are the major reasons. Hino P11C engine has adopted it and kept it under mass production since 1991 and approx.20000 units of total production volume without any troubles.
Technical Paper

Wide Range Air-Fuel Ratio Control System

A new air-fuel ratio control algorithm and its effect on automotive engine operation is described. The system consists of a wide range air-fuel ratio sensor and a single point injector with an ultrasonic fuel atomizer. The air-fuel ratio control adopts PID control and it has built-in learning control. A 16 bit microcomputer is used for the latter. The results of three studies are given. The first deals with adaptive PID gain control for various conditions. The second is the new learning control which uses an integration terra. The third is individual cylinder air-fuel ratio control.
Technical Paper

Wind Tunnel Investigation of the Effects of Installation Parameters on Truck Cooling System Performance

The effect of eight installation and component parameters on cooling system heat rejection and air flow were examined in detail in a wind tunnel facility. A quarter-replicate, two level factorial test plan was followed. Within the ranges of each parameter tested, the fan characteristics and the projection of fan into the shroud are highly significant parameters. The fan to radiator distance, the radiator characteristics, and the fan tip to shroud clearance are significant parameters. The fan to engine block distance and the type of shroud are not significant parameters.
Technical Paper

Windage Tray Design Comparison Using Crankcase Breathing Simulation

The conflicting requirements of better fuel economy, higher performance and lower emissions from an automobile engine have brought many new challenges that require development teams to look beyond conventional test and seek answers from simulations. One of the relatively unexplored areas of development where frictional losses haven't been completely understood is the flow in the crankcase. Here computational engineering can play a significant role in analyzing flow field in a hidden and complex region where otherwise testing has serious limitations. Flow simulation in the crankcase poses significant complexity and provides an opportunity to enhance the understanding of underlying physics by using multi-physics analyses tools available commercially. In this study, air space under the piston and above the oil level in oil pan is simulated. It is known that bay-to-bay breathing and windage holes account for considerable amount of power losses in the crankcase.
Technical Paper

Winterization of Vehicles To -50F

Discussion in this paper is centered on general problems of subarctic operation, results of the 1968-1969 winter testing at Ft. Churchill, Manitoba, Canada, and the testing planned for the 1969-1970 season at Ft. Churchill. Significant findings from the 1968-969 testing indicate the vital importance of care in preparation of vehicles for the arctic, the need for greater simplicity and reliability in design of winterization systems, and the inadequacy of currently used elastomeric components (hoses, o-rings, etc.).
Technical Paper

Wire Braid Angle Response Characteristics in Hydraulic Hose

This report is concerned with the effects of braid angle on the behavior of hydraulic hose. For equilibrium conditions to exist, and if the braid layers are assumed to bear tension forces only, the angle of the reinforcement layers must be along that of the total force exerted by the internal pressure. This is the neutral angle θN, which has a theoretical value of 54.74° (54°44′). It is possible to hypothesize a fretting wear model in which wires move on top of one another inside a braid layer if the braid angle is different from this theoretical neutral angle. Even though theoretical claims are made by some technical professionals, the hydraulic hose industry has been successfully making hoses with non-neutral braid angles for years. Testing and application have shown that fretting wear is not a principal cause of hose failure and fatigue.
Technical Paper

Work Extraction Efficiency in a Series Hybrid Opposed Piston Engine

This work investigates the development of a novel series hybrid architecture utilizing a single cylinder opposed piston engine. The opposed piston engine presents unique benefits in a hybrid architecture such as its lower heat transfer due to a favorable surface area to volume ratio and lack of a cylinder head, as well as the thermodynamic benefits of two stroke operation with uniflow scavenging. A particular focus of this effort is the work extraction efficiency of two design concepts. The first design concept utilizes a geartrain to couple the crankshafts of the engine in a conventional manner, providing a single power take-off for coupling to an electric motor/generator. In this design, the large inertia of the geartrain dampens the speed fluctuation of the single cylinder engine, reducing the peak torque required to for the electric machine. However, the friction losses caused by the geartrain limit the maximum work extraction efficiency.
Technical Paper

Working Fluid De-freezing in Radiator on Base of LHP

Selection of working fluid is one of the main criterions for designing of heat pipes thermal control systems (TCS) for space application. In this paper we will describe how we solved the task of development of the TCS with working fluid of high thermal physical properties. In 2004-2006 we developed the Engineering model of Deployable Radiator based on Loop Heat Pipe by CAST purchase order. It was developed for qualification tests. Ammonia application as LHP working fluid is stipulated by its high thermal physical properties. However Ammonia freezing temperature is of minus 77ºC. Such fact impedes Ammonia application when operation temperatures of LHP Radiator are lower than this value, for example, It takes several tens of hours to orbit a spacecraft and prepare it for work (at that moment the spacecraft is out of power supply) and the working fluid can be frozen in a condenser-radiator when the spacecraft being in the shadow over a long period of time.
Technical Paper

Working Fluid Properties Variation During Combustion in Premixed Charge Hydrogen Engines

Several studies have been performed to investigate the effects of using hydrogen in spark ignition (SI) engines. One general conclusion that emerged was that stoichiometric operation of premixed charge hydrogen engines features increased losses compared to other fuels such as methane. Most studies attribute this higher loss to increased rates of heat transfer from the working fluid to the combustion chamber walls. Indeed, heat flux measurements during combustion and expansion recorded much higher values for hydrogen compared to methane stoichiometric operation. With regard to fluid properties, using the same net heat release equation as for gasoline engines results in an over prediction of heat losses to the combustion chamber walls. Also, the variation of specific heats ratio greatly influences calculated values for the rate of heat release. Therefore, a more detailed analysis of heat losses is required when comparing hydrogen to other fuels.
Technical Paper

Working Out of Heat Pipes for Low Temperature Radiative Cooling Systems for Space Optic Sensors

The substantiation of heat pipe usage in passive radiative cooling systems on temperature level (190…240) K for space optical sensors is presented. Heat pipes can be sound practice like heat conducting lines between sensor and radiator particularly at distances more 0.2 m and irreplaceable at distances (0.5…2) m. Embedding heat pipe with radiator allows to create the uniform temperature basis in case of several sensors connection to single radiator and to improve radiator efficiency. It is analyzed approach to design of thermocontrol and cooling radiative systems with heat pipes to reduce sensitiveness to external light disturbances and to enlarge area of radiative system application. The results of design, thermovacuum test and flight operation of thermocontrol radiative system samples are under discussion as well.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.