Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

17 Study on Auto-Ignition and Combustion Completion of n-Butane in a Two-stroke Homogeneous Charge Compression Ignition (HCCI) Engine

2002-10-29
2002-32-1786
Homogeneous Charge Compression Ignition (HCCI) is good method to be higher efficiency and to reduce NOx emission and particular matter together than conventional SI combustion engine. But HCCI depends on chemical reaction of fuel and air mixture. So controlling of ignition timing is difficult, and HCCI is high THC and CO emissions because temperature can't reach the enough temperature to reduce those. In this study, we investigated factor for auto ignition timing and combustion completion on n-Butane/Air mixture by a two-stroke HCCI engine. Auto Ignition temperature are known to be decided by fuel(1), for n-Butane, the temperature was 1150±30K. And as we researched combustion completion from In-cylinder gas temperature, increasing In-cylinder gas temperature caused high combustion efficiency and low THC, CO emissions.
Technical Paper

18 Gasoline CAI and Diesel HCCI: the Way towards Zero Emission with Major Engine and Fuel Technology Challenges

2002-10-29
2002-32-1787
Engines and fuels for transport as well as off-road applications are facing a double challenge: bring local pollution to the level requested by the most stringent city air quality standard reduce CO2 emission in order to minimize the global warming risk. These goals stimulate new developments both of conventional and alternative engines and fuels technologies. New combustion processes known as Controlled Auto-Ignition (CAI™) for gasoline engine and Homogeneous Charge Compression Ignition (HCCI) for Diesel engine are the subject of extensive research world wide and particularly at IFP for various applications such as passenger cars, heavy-duty trucks and buses as well as small engines. Because of the thermo-chemistry of the charge, the thermal NOx formation and the soot production are in principle much lower than in flames typical of conventional engines.
Technical Paper

180MPa Piezo Common Rail System

2006-04-03
2006-01-0274
The challenge for the diesel engines today is to reduce harmful emissions, such as particulate matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power, which are its main advantages. To meet this challenge, DENSO has developed an advanced common rail system (CRS) that uses piezo actuated fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa, currently the world's highest commercially available diesel fuel injection pressure. The DENSO piezo injector incorporates an internally developed piezoelectric element that energizes quicker than its solenoid counterpart, thereby reducing the transition time for the start and end of the fuel injection event. The piezoelectric element and unique passage structure of the DENSO injector combine to provide a highly reliable and responsive fuel injection event.
Technical Paper

19 Separation of Combustion Noise using Transient Noise Generation Model

2002-10-29
2002-32-1788
In a running engine, various impacts are excitation sources for structural vibrations and engine noises. Engine noises are classified, depending on their excitation sources, into the combustion noise, the combustion induced mechanical noise and the mechanical noise. It is difficult to measure such noises separately because some impacts occur closely in time and space. In this paper, a transient noise generation model of an engine was proposed considering vibration and its damping of engine structure. The present model was verified through the single explosion excitation experiment for a stationary engine. Using the noise generation model, the combustion noise was separated from the total noise radiating from a running four-stroke gasoline engine for motorcycles. It was found that the combustion noise had larger power at lower frequencies than higher frequencies. However, its contribution to the total engine noise was relatively small.
Technical Paper

19-Color H2O Absorption Spectrometer Applied for Real-Time In-Cylinder Gas Thermometry in an HCCI Engine

2007-04-16
2007-01-0188
1 An all fiber-optic sensor has been developed to measure H2O mole fraction and gas temperature in an HCCI engine. This absorption-spectroscopy-based sensor utilizes a broad wavelength (1320 to 1380 nm) source (supercontinua generated by a microchip laser) and a series of fiber Bragg gratings (19 gratings centered on unique water absorption peaks) to track the formation and temperature of combustion water vapor. The spectral coverage of the system promises improved measurement accuracy over two-line diode-laser based systems. Meanwhile, the simplicity of the fiber Bragg grating chromatic dispersion approach significantly reduces the data reduction time and cost relative to previous supercontinuum-based sensors. The data provided by the system is expected to enhance studies of the chemical kinetics which govern HCCI ignition as well as HCCI modeling efforts.
Technical Paper

1941 CFR ROAD DETONATION TESTS - Further Experience with New Methods (Compiled from Report of the Cooperative Fuel Research Committee)

1942-01-01
420122
The cooperative road tests carried out during 1941 have added considerable information and experience to that already existing on the subject of road detonation testing. Extensive data were obtained on the fuel requirements of the 1940 and 1941 models of the three most popular cars. Corresponding data were obtained on the knocking characteristics of current gasolines representing the bulk of the sales volume in various parts of the United States. On account of large variations in octane-number requirement among different cars of the same make - due to differences in ignition timing, combustion-chamber deposit, and other causes - and on account of variations in commercial gasolines, it has been necessary to use statistical methods of analysis in the appraisal of fuel and engine relationships. These methods of analysis have been applied in a number of ways, and have proved very useful.
Technical Paper

1971 Cars and the “New” Gasolines

1971-02-01
710624
The recent introduction of lower compression ratio engines and the concurrent marketing of unleaded and low-lead content gasolines of generally lower octane number made it appropriate to investigate the interrelationships of engine performance and gasoline octane quality using the “new” engines and fuels. Programs were carried out to compare fuel economy and acceleration performance of eight matched pairs of 1970 and 1971 automobiles. In addition, octane requirements were obtained on 43 1971 cars with 3,000-12,000 deposit miles. A total of 146 unleaded, low-lead, and leaded regular gasolines obtained at service stations throughout the country were analyzed, and the road octane performance of these gasolines was determined using 1970 and 1971 cars designed for regular gasoline.
Technical Paper

1978 to 1980 Ford On-Road Fuel Economy

1981-02-01
810383
Since 1978 Ford Motor Company has been surveying the fuel economy of employes who lease new light duty vehicles from the Company. Winter and summer survey data for the three years are analyzed and compared. Car results show a significant and steady increase in average on-road fuel economy over the three year period. The percent differential between EPA measured and actual on-road fuel economy has lessened substantially since 1978. Furthermore, the percent difference between EPA and on-road is essentially constant over the range of EPA values for each of the three years. Limited fuel economy results for 1980 trucks are also discussed.
Technical Paper

1980 Prince Edward Island Auto Fuel Economy and Emissions Test Program

1982-02-01
821230
A program of emission testing and carburetor adjustment to reduce the levels of hydrocarbons and carbon monoxide in the exhaust gases and to demonstrate fuel economy improvements was held in Charlottetown during the week of July 14 to 19, 1980. The program was a co-operative effort of the Centre of Energy Studies of the Technical University of Nova Scotia, the Mobile Sources Division of the Air Pollution Control Directorate, Environment Canada and the Prince Edward Island Energy Corporation. Five hundred and twenty vehicles were tested during the period. The program was well received by the public and indicated that only 32% of the vehicle fleet were within specification when initially tested. A large percentage of these vehicles were satisfactorily adjusted. Mailback record cards were used to obtain an indication of the improved fuel economy. The data suggests that a substantial saving in fuel can be attained through carburetor tuning for low exhaust emissions.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1985 Light-Duty Truck Fuel Economy

1980-10-01
801387
This paper addresses fuel economy standards that can be obtained in 1985 for two-wheel drive LDT's using existing technology. To estimate the fuel economy, the fleet of LDT's is first segmented into market classes based on the concept of utility. The 1985 sales share of each class is predicted from an extrapolation of current trends as well as published sales forecasts. The 1985 fuel economy of each market class is projected using 1) MY '80 truck technology and fuel economy as a baseline, 2) a regression equation that allows an estimate of fuel economy based on the weight, drag, and engine displacement, and 3) the addition of fuel-efficient technologies. Estimates of weight reduction and new model introduction within each market class were derived from published manufacturers' plans. Based on this methodology, this analysis concludes that a fleet fuel economy in excess of 24/25 mpg is feasible for 1985 without/with the use of diesel engines.
Standard

1995 Certified Power Engine Data for Kawasaki FX801V as used in 2017 General Purpose Engines - Level 2

2016-10-14
CURRENT
CPKW2_17FX801V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

2000-09-11
2000-01-2574
A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1998 Ranger Pulse Vacuum Hublock 4x4 System

1997-11-17
973237
This paper describes the design and features of the 1998 Ranger Pulse Vacuum Hublock (or PVH) 4x4 system. This part-time 4x4 system with wheel-end disconnect offers optimized fuel economy in a robust design that requires no regularly scheduled maintenance under normal driving conditions. The system allows silent 4WD shift on the fly at any speed or temperature and does not require reversing the vehicle to disengage the hublocks.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
X