Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“Derivation of Conduction Heat Transfer in Thin Shell Toroids”

2000-07-10
2000-01-2487
This paper presents the derivation of the equations for circumferential, longitudinal and radial heat transfer conductance for a thin shell toroid or a segment of the toroid. A thin shell toroid is one in which the radius to thickness ratio is greater than 10. The equations for the surface area of a toroid or of a toroidal segment will also be derived along with the equation to determine the location of the centroid. The surface area is needed to determine the radial conductance in the toroid or toroidal segment and the centroid is needed to determine the heat transfer center of the toroid or toroidal segment for circumferential and longitudinal conductance. These equations can be used to obtain more accurate results for conductive heat transfer in toroid which is a curved spacecraft components. A comparison will be made (1) using the equations derived in this paper which takes into account the curvature of the toroid (true geometry) and (2) using flat plates to simulate the toroid.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Experimental Investigation on the Properties of Briquettes Made from Ideal Municipal Waste: An Alternate Fuel”

2023-11-10
2023-28-0060
Energy demand climbs as a consequence of the inherent relationship between the rate of consumption of energy and the growth of the economy. In light of the depletion of fossil fuels, it is necessary to implement energy efficiency techniques and policies that support sustainable development. Globally, researchers show more interest in discovering fossil fuel alternatives, as a result of fuel crisis. This research elaborates on the production and experimental investigation of briquettes made from ideal municipal solid waste (MSW), such as food waste and garden waste, as a feasible choice for alternate fossil fuels. From Municipal, agricultural, and food waste, we can get biomass waste. Municipal solid and agricultural waste is extensively dispersed, but their potential for converting biomass into energy generation still needs to be explored. This study was carried out based on the information gathered from various studies published in the scientific literature.
Technical Paper

“FEV’s ‘CogniSafe’: An Innovative Deep Learning-Based AI Driver Monitoring System for the Future of Mobility”

2024-04-09
2024-01-2012
Driver state monitoring is a crucial technology for enhancing road safety and preventing human error-caused accidents in the era of autonomous vehicles. This paper presents CogniSafe, a comprehensive driver monitoring system that uses deep learning and computer vision methods to detect various types of driver distractions and fatigue. CogniSafe consists of four modules: Driver anomaly detection and classification: A novel two-phase network that proposes and recognizes driver anomalies, such as texting, drinking, and adjusting radios, using multimodal and multiview input. Gaze estimation: A video-based neural network that jointly learns head pose and gaze dynamics, achieving robust and efficient gaze estimation across different head poses. Eye state analysis: A multi-tasking CNN that encodes features from both eye and mouth regions, predicting the percentage of eye closure (PERCLOS) and the frequency of mouth opening (FOM).
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

1994-10-01
942132
The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
Technical Paper

“Implementation of Lithium Ion Battery System” for FCX Clarity

2009-04-20
2009-01-1013
A lithium ion battery system has been developed for use in Honda's FCX Clarity fuel cell vehicle. This represents the first time that Honda has employed lithium ion batteries. The battery system equals the high level of power of the ultracapacitor system used in the previous FCX vehicle but achieves a higher level of energy, contributing to various improvements in performance, such as the Clarity's superior acceleration feel and improved fuel efficiency. The system displays sufficient durability and reliability at the same time as satisfying requirements from the perspective of safety. In addition, positioning the battery system under the floor of the vehicle has increased cabin space, boosting the Clarity's commercial appeal.
Technical Paper

“Investigation of High Achievable Pollutant Reduction on a “State of the Art” Indian 2 Wheelers - Technology Road Map to a Cleaner Air”

2015-11-17
2015-32-0802
Affordable, efficient and durable catalytic converters for the two and three wheeler industry in developing countries are required to reduce vehicle emissions and to participate in a cleaner and healthier environment. As a contribution Continental Emitec started a comprehensive testing program with a state of the art 180 cc Bharat Stage (BS) III Indian motorcycle. The program consists of testing the state of the art of Metallic substrates with structured foils with various catalyst sizes and positions (original or close coupled). The publication presents a short literature survey and the results of the investigation with a big catalyst volume mounted in underfloor position as well as in close coupled position, gained over the World-wide harmonized Motorcycle Test Cycle, considering the two possible vehicle classifications of this motorcycle, Sub-Class 2.1 and Sub-Class 2.2.
Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
X