Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wire Segment Error Locating Algorithm for Wiring Connection Verification Tool

2008-04-14
2008-01-0408
Due to increasing amount of modules and customized options in commercial vehicles, it becomes more and more difficult to verify the circuit design. In this paper, a wire segment error locating algorithm is proposed to automate the exact wire segment error locating process. When a wrong connection is found by existing tool, guided by the exact description of wire segment error, this algorithm can locate exact wire segment error in the connection by searching for the one that has at least one neighboring segment from a correct connection.
Standard

Wire, Electrical, Crosslinked Polyalkene, Crosslinked Alkane-Imide Polymer, Or Polyarlyene Insulated, Copper Or Copper Alloy

2021-12-02
WIP
AS81044C

AS81044 covers single conductor electric wires made as specified in the applicable detail specification with tin-coated, silver-coated, or nickel-coated copper or copper alloy conductors insulated with crosslinked polyalkene, crosslinked alkane imide polymer, or polyarylene. The crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene may be used alone or in combination with other insulation materials as specified in the detail specification.

Standard

Wire, Electrical, Fluoropolymer-Insulated, Copper or Copper Alloy

2011-09-06
HISTORICAL
AS22759B
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials.
Journal Article

Wireless Charging System Localization for Electric Vehicles Using RSSI

2015-04-14
2015-01-0283
Pedestrians A method of locating a charging target device (vehicle) in a parking lot scenario by the evaluation of Received Signal Strength Indication (RSSI) of the Dedicated Short Range Communications (DSRC) signal and Global Positioning System (GPS) data is proposed in this paper. A metric call Location Image (LI) is defined based on the RSSI received from each charger and the physical location of the parking associated to that charger. The central parking lot processor logs the GPS coordinates and LI received from the vehicle. Each pairing attempt by a vehicle loads a new LI into the central processor's database. Utilizing the LI and the proposed methods the vehicle will achieve expedited charger to system pairing while in the company of multiple chargers.
Book

Wireless Charging Technology and The Future of Electric Transportation

2015-06-08
Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and inter-operability. Wireless Charging Technology and the Future of Electric Transportation covers the current status of wireless power transfer (WPT) technology and its potential applications to the future road and rail transportation systems. Focusing on the applications of WPT technology to electric vehicle charging and the future green transportation field, Wireless Charging Technology and the Future of Electric Transportation was written collaboratively by nine experts in the field, led by Dr. In-Soo Suh, a professor and researcher from the Korean Advanced Institute of Technology (KAIST).
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Technical Paper

Wireless Devices Usage with Adaptive Interfaces in the Context of Aeronautical Maintenance Processes to Reduce the Incidence of the Human Error and Increase Safety

2007-09-17
2007-01-3832
This work falls in the context of aeronautical maintenance processes. The purpose is to increase the effectiveness and the efficiency of the operations carried out during the activities in the processes mentioned above, as well as the reduction of the incidence of the human error in the development of these activities, with consequent implicit increase of the safety of the aircrafts. Human error has been documented as a primary contributor to more than 70 percent of commercial airplane hull-loss accidents. While typically associated with flight operations, human error has also recently become a major concern in maintenance practices and air traffic management. We have tried to obtain an increment of the safety formalizing the information exchange process avoiding ambiguous, inaccurate or incomplete data that can indirectly encourage the deviation of the personnel from established procedures.
Technical Paper

Wireless Ground Communication in Support of Aircraft Maintenance and Flight Operations

1995-05-01
951387
The wireless Spread Spectrum Ground Communication (SSGC) system will contribute to the enhancement of aircraft maintenance, flight, dispatch, and cargo operations efficiency. A concept layout of the wireless SSGC system implementation in an airport environment is illustrated in Figure 1. The SSGC system will provide both text/graphics data transmission and voice communication for flight crew, maintenance, and dispatch personnel in the airport gate environment. This system will link ground information system and onboard avionics systems, and provide access by ground crew to an information database through portable graphics terminals. The objective is to integrate both airborne avionics, ground crew, and ground based resources into a seamless operating system.
Technical Paper

Wireless Integrated Cockpit Information Display: Military Cockpit Applications

2007-09-17
2007-01-3905
The Wireless Integrated Cockpit Information Display (WICID) program developed a method for pilots to remotely control and display carry-on laptop based applications from the aircraft cockpit. Because flight safety concerns do not allow the pilot/copilot to use the standard keyboard and mouse devices during flight, the WICID program developed a multifunction display (MFD) that uses customized input devices such as bezel keys and a touch screen. The subsequent design of the WICID system became especially valuable in enhancing certain technologies critical to the military cockpit. This paper will address how the WICID system topology is uniquely suited to improve cockpit access to four main technology categories: Enhanced Situation Awareness (SA), Mission Planning/On-board Replanning, Enhanced Communication, and Navigation Aids.
Standard

Wireless Power Transfer for Heavy-Duty Electric Vehicles

2022-12-16
CURRENT
J2954/2_202212
The published SAE J2954 standard established an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) for light-duty plug-in electric vehicles. This SAE Information Report, SAE J2954/2, defines new power transfer levels in the higher power ranges needed for heavy-duty electric vehicles. This document addresses the requirements based on these charge levels and different vehicle applications as a first step in the process of completing a standard that the industry can use, both for private (fleet) and public wireless power transfer, including for charging electric vehicle batteries. This document is the first step in a process towards HD static and dynamic WPT. This document lacks specific requirements and solutions, for which field data is needed.
Standard

Wireless Power Transfer for Heavy-Duty Electric Vehicles

2024-05-29
WIP
J2954/2
The published SAE J2954 standard established an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) for light duty plug-in electric vehicles. This SAE Information Report, SAE J2954/2, defines new power transfer levels in the higher power ranges needed for heavy-duty electric vehicles. This Recommended Practice document addresses the requirements based on these charge levels and different vehicle applications as a first step in the process of completing a standard that the industry can use, both for private (fleet) and public wireless power transfer, including for charging electric vehicle batteries. This revision focusses exclusively on static HD-WPT. A new document, has been created, SAE RP J2954/3 that will encompass all dynamic wireless power transfer (D-WPT).
Standard

Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology

2016-05-26
HISTORICAL
J2954_201605
SAE TIR J2954 establishes an industry-wide specification guideline that defines acceptable criteria for interoperability, electromagnetic compatibility, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2 and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
Standard

Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology

2017-11-27
HISTORICAL
J2954_201711
The SAE Recommended Practice J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3 with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2020-10-20
HISTORICAL
J2954_202010
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under SAE J2954 should also be able to be charged conductively by SAE J1772 plug-in chargers. SAE J2954 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2024-08-13
CURRENT
J2954_202408
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines three charging levels up to 11 kVA and in future revisions up to 22 kVA. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. This is meant to be used in conjunction with communications standard SAE J2847/6 and use cases J2836/6 and ground assembly WPT Certification UL 2750. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under SAE J2954 should also be able to be charged conductively by SAE J1772 plug-in chargers.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-23
HISTORICAL
J2954_201904
The Recommended Practice SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under Recommended Practice SAE J2954 should also be able to be charged by SAE J1772 plug-in chargers.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2022-08-26
HISTORICAL
J2954_202208
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under SAE J2954 should also be able to be charged conductively by SAE J1772 plug-in chargers. SAE J2954 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Technical Paper

Wireless Power Transfer in Aircraft Systems

2024-03-05
2024-01-1927
The aerospace industry is noticing significant shift towards More Electric Aircraft (MEA). The advancement of electrical technology the systems are being transformed towards electric compared to the conventional pneumatic or hydraulic systems. This has led to an increased demand in electrical power from 150 Kilo Watts in the conventional airplane to 1 Mega Watts in More Electric Aircraft. More electric systems, call for increased electrical wiring harness to connect various systems in the aircraft. These harnesses consist of power and data cables. Wireless communication technology is being matured for data communication, leading to reduction of wire harness for data. As of now, the length of wires in large commercial aircraft is over 100miles and it may not be surprising if the electrification of aircraft drive this too much longer.
Journal Article

Wireless Security in Vehicular Ad Hoc Networks: A Survey

2022-08-17
Abstract Vehicular communications face unique security issues in wireless communications. While new vehicles are equipped with a large set of communication technologies, product life cycles are long and software updates are not widespread. The result is a host of outdated and unpatched technologies being used on the street. This has especially severe security impacts because autonomous vehicles are pushing into the market, which will rely, at least partly, on the integrity of the provided information. We provide an overview of the currently deployed communication systems and their security weaknesses and features to collect and compare widely used security mechanisms. In this survey, we focus on technologies that work in an ad hoc manner. This includes Long-Term Evolution mode 4 (LTE-PC5), Wireless Access in Vehicular Environments (WAVE), Intelligent Transportation Systems at 5 Gigahertz (ITS-G5), and Bluetooth.
Technical Paper

Wireless Sensing - Future's Password to Digital Avionics System

2014-09-16
2014-01-2132
Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
X