Refine Your Search




Search Results

Technical Paper

Virtually Evaluated Welds for Powertrain Installation Bracketry and Physically Correlated for First Time Right Designs

Virtual validation of automobile components poses a huge challenge and needs continuous process improvements. One of such challenge in FE modelling of welds and understanding its behavior with respect to physical behavior. With the ongoing development of BSVI line of products in commercial vehicle industry, the virtual validation needs to be accurate and close to the physical behavior of the components. The learning and challenges faced during the previous development is implemented in the current study for weld simulation and correlation activity. The brackets welded to the power train components is taken as a challenge in the present work. Initially weld model was depicted in the CAD and was analyzed in CAE by providing proper FE connection. This practice had lot of flaws, approximations due to perpendicularity and flatness concerns in the models leading to consuming a lot of time in model preparation.
Technical Paper

Visco Coolant Pump - Demand-Based Flow Rate Control

After many years of successful Visco fan drive applications, Behr has now transferred the Visco technology to the coolant pump drive. The continuously variable Visco drive allows the coolant pump to deliver the optimum flow dependent upon the requirements, therefore reducing the drive power to the minimum possible. Up to now coolant pumps, world wide, have almost always been powered by direct, uncontrolled drives. Consequently, the delivery and the power consumption have been directly related to the engine speed, which, in many conditions, results in an unnecessarily high flow rate. The potential to reduce the flow rate is inherent within the Visco coolant pump. As a concept with continuous control of the impeller speed it has been found to be more fuel efficient than incremental impeller speed control or concepts which only restrict or divert the flow rate. The torque transmission via the shear forces of a silicone oil results in a robust and wear-free drive unit.
Technical Paper

Vocational and Body Builder Controls Features of the Allison 1000/2000/2400 Series™ Automatic Transmission

Light and Medium Duty Trucks (N.A. Classes 2–7) make up of a wide variety of vehicle configurations. These vehicles, in addition to providing the basic hauling needs of the industry, also provide distinct operational features dictated by the vocation they serve. This results in additional auxiliary equipment and control features being employed. The control system for Allison Transmission's new 1000/2000/2400 Series™ transmission was designed to satisfy the many requirements of this complex market. This paper will describe these features and how they interact with various control aspects of the vehicle. Also, future control features will be discussed.

Volumetric Rating of Excavator Mounted, Bucket Linkage Operated Grapples

This standard specifies a procedure for approximating the volume of materials contained in the grapple of bucket linkage operated grapples mounted to excavators. The volume ratings are based on the inside dimensions of the grapple and representative volumes extending beyond the grapple. The method employs the technique of dividing the complex shape of the material in the grapple into simple geometric forms to allow volume calculations of different grapple configurations. The rating method is intended to provide a consistent means of comparing grapple capacities. It is not intended to define actual capacities that might be observed in any specific application.

Volvo Penta debuts two new off-highway engines

Developed in coordination with the Volvo Group, the D5 and D8 engines feature a newly designed platform with a larger displacement compared to previous versions. The new engines offer improved an engine block stiffness and higher torque at low speed.

Volvo Penta talks Tier 4 trends

Urban Larsson, Head of Product Development at Volvo Penta, has been at the company for 30 years and worked with its complete product range, including the journey along all the global emissions Tier platforms as regulations steadily increased.

Wärtsilä virtualizes marine engine design and testing

The costs of building and running prototype engines are high, but they’re extremely daunting when each cylinder of a marine engine provides more than 1000 kW (1340 hp). That’s prompted Wärtsilä to invest heavily in hardware and software so modeling, simulation and virtual testing can be used to shorten development time and ensure that all design requirements are met.
Technical Paper


NEARLY 300 fleet operators were questioned by Mr. Laurie to gather data for this paper on what features the users of trucks would like to have the manufacturers incorporate in post-war trucks. The cooling system is one important item that came in for its share of criticism. For example, maintaining the proper coolant level is most important, and yet many of today's systems require filling into the filler neck before the liquid level can be seen. Petcocks or sight gages properly installed could solve this problem, according to Mr. Laurie. Accessibility for maintenance should also be improved in the post-war truck. Some of today's trucks have batteries that are not located for ease of servicing and spark plugs that it is almost impossible to remove and replace. Improvements should also be possible in cold starting of the engine, based on the experience of the Army in cold climates.
Technical Paper

Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles

The use of reciprocating internal combustion engines (ICE) dominates the sector of the in-the-road transportation sector, both for light and heavy duties. CO2 reduction is the technological driver, considering the severe worldwide greenhouse commitments. In ICE more than one third of the fuel energy used is rejected to the environment as thermal waste through the exhaust gases. Therefore, a greater fuel economy could be achieved, recovering this energy and converting it into useful electric power on board. Financial benefits will be produced in terms of fuel cost which will rebound similar benefits in terms of CO2 emitted. For long hauling vehicles, which run for thousands of miles, frequently at fixed engine operating conditions, this recovery appears very worthy of attention. In this activity, an ORC-based power unit was designed, built and tested fed by a heavy duty diesel engine, so contributing to the huge efforts on going in that specific sector.
Technical Paper

Waste Heat Recovery from Multiple Heat Sources in a HD Truck Diesel Engine Using a Rankine Cycle - A Theoretical Evaluation

Few previous publications investigate the possibility of combining multiple waste heat sources in a combustion engine waste heat recovery system. A waste heat recovery system for a HD truck diesel engine is evaluated for utilizing multiple heat sources found in a conventional HD diesel engine. In this type of engine more than 50% of heat energy goes futile. The majority of the heat energy is lost through engine exhaust and cooling devices such as EGRC (Exhaust gas recirculation cooler), CAC (Charge air cooler) and engine cooling. In this paper, the potential of usable heat recuperation from these devices using thermodynamic analysis was studied, and also an effort is made to recuperate most of the available heat energy that would otherwise be lost. A well-known way of recuperating this heat energy is by employing a Rankine cycle circuit with these devices as heat sources (single loop or dual loop), and thus this study is focused on using a Rankine cycle for the heat recovery system.