Refine Your Search




Search Results

Technical Paper

the use of Radioactive Tracer Techniques to determine the effect of operating variables on Eng ine Wear

RADIOTRACERS were used to study the wear effects of engine speed, load, jacket water temperature, fuel temperature, and chromium-plated rings in a medium-speed diesel engine. One distillate fuel and two residual fuels were tested. This paper describes the tests and their results. Some of the conclusions are: The brake thermal efficiency with high viscosity residual fuel was essentially equal to distillate diesel fuel over a wide range of loads, providing the residual fuel was heated to the proper temperature. Engine speed did not affect the wear rate of cast-iron rings when distillate fuel was used, while with residual fuel wear decreased with increased speed. With distillate fuel, engine load had essentially no effect on cast-iron ring wear. With residual fuel, decreasing engine load produced a marked increase in ring wear*
Technical Paper

ways of improving TAKE-OFF AND LANDING

SOME POSSIBILITIES for shortening the field length requirements of present-day jet aircraft are: Install leading-edge, high-lift devices which are retrofitable to present-day aircraft. Retrofit — or purchase new — aircraft powered by turbofan engines. These have an inherently higher take-off thrust to cruise thrust ratio than the jets, which vastly improves the take-off acceleration. Use boundary-layer control actuated by turbine discharge gas for immediate consideration in new aircraft engines. Use direct-lift jet engines. These will improve the block speed characteristics of the aircraft and also give vertical take-off and landing capabilities. This paper discusses the advantages of each of these possibilities. The author also describes the problem of airport location within a city, and its effect of total travel time.*
Journal Article

xD+1D Catalyst Simulation-A Numerical Study on the Impact of Pore Diffusion

This paper presents a numerical study on the impact of washcoat diffusion on the overall conversion performance of catalytic converters. A comprehensive transient 1D pore diffusion reaction model is embedded in state-of-the-art 1D and 3D catalytic converter models. The pore diffusion model is discussed with its model equations and the applied diffusive transport approaches are summarized. The diffusion reaction model is validated with the help of two available analytical solutions. The impact of basic washcoat characteristics such as pore diameters or thickness on overall conversion performance is investigated by selected 1D+1D calculations. This model is also used to highlight the impact of boundary layer transfer, pore diffusion and reaction on the overall converter conversion performance. The interaction of pore diffusion and flow non-uniformities is demonstrated by 3D+1D CFD simulations.

xEV Labels to Assist First and Second Responders, and Others

This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
Technical Paper

α-Pinene - A High Energy Density Biofuel for SI Engine Applications

This study proposes a novel biofuel for spark ignition (SI) engine, α-pinene (C10H16), which is non-oxygenated and thus has a gravimetric energy density comparable to that of hydrocarbon fuels. The ignition characteristics of α-pinene were evaluated in an ignition quality tester (IQT) under standard temperature and pressure conditions. The measured ignition delay time (IDT) of α-pinene is 10.5 ms, which is lower than that of iso-octane, 17.9 ms. The estimated research octane number (RON) for pinene from IQT is 85. A temperature sweep in IQT showed that that α-pinene is less reactive at low temperatures, but more reactive at high temperatures when compared to isooctane. These results suggest that α-pinene has high octane sensitivity (OS) and is suitable for operation in turbocharged SI engines. With these considerations, α-pinene was operated in a single cylinder SI engine.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

μ - Synthesis of Robust Control on Active Mounts for Vehicle Vibration Reduction

This paper presents a new design method for solving the vehicle vibration problem induced by engine drive, by using a μ-synthesis. We have tried the active control of engine mounts to insulate the vibration of engine. We experimented on the effects by using computer simulation and vibration simulator. Computer simulation results show that resonance peak can be effectively reduced. We have also confirmed the effect of vibration simulator, which shall be reported in this paper.
Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Technical Paper

‘A Comparative Study of the Integrity of Joints Between Multilayer Fuel Line Constructions and Different Connector ‘Barb’ Designs

With the advent of low evaporative emission requirements there has been the rapid adoption of multilayer extrusion technology into the production of Fuel and Vapour tubing used on Fuel systems on automobiles. Multilayer extrusion technology enables a manufacturer of Fuel and Vapour tubing to simultaneously co-extrude dissimilar thermoplastic materials in tubular form. This allows the manufacturer to combine expensive and brittle high performance evaporative emission ‘barrier’ polymers with lower cost engineering polymers. However, it is a well-known characteristic of these multilayer tube constructions that the joints between them and connector ‘barbs’ have lower joint integrity. Joint integrity is most often quantified by ‘Pull-off’ and leakage tests. Recent developments in LEV-II requirements for 2004 and beyond indicate that joint integrity will become a focus area for study and improvement.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

‘FM’ - A High Efficiency Combustion System for the Future Light Duty Engine?

Consideration of the approaching ‘energy crisis’ reveals two requirements for future light duty automotive engines. 1) maximum economy and 2) the ability (perhaps with detail design re-optimisation) to accept a range of fuels of petroleum or other extract, of differing ignition characteristics. One combustion system which meets these requirements is the MAN ‘FM’, the potential of which has already been demonstrated in truck-size engines but on which little information has been published in light-duty engine bore sizes. The paper describes both design and experimental work carried out to evaluate the application of the FM combustion system to a light duty passenger car engine. Consideration is given to the critical design parameters associated with the application of the FM system to a multi-cylinder gasoline based engine and how the criteria can be met. Details of the design and construction of a single cylinder derivative of the multi-cylinder engine are given.
Technical Paper

‘Regulated’ and ‘Non-regulated’ Emissions from Modern European Passenger Cars

Regulated emissions from four current production European vehicles were measured over the Common Artemis Driving Cycles (CADC). Particulate Mass and Particle Number measurements were made in accordance with the newly-developed draft Particulate Measurement Programme (PMP) developed for the UN-ECE's expert group on pollution and energy (GRPE). During the test programme measurements were also made of currently non-regulated emissions including PAHs and speciation of the particulate material and key hydrocarbons. CADC results are presented for each of the four vehicles tested (one conventional gasoline vehicle, two different types of diesel without Diesel Particulate Filter (DPF) and one diesel with DPF) with results measured on the regulated New European Driving Cycle (NEDC) test for comparison. The emissions results on the Artemis cycles showed some significant differences from those on the regulated (NEDC) test cycle.
Technical Paper

“A Flame Ionization Technique for Measuring Total Hydrocarbons in Diesel Exhaust”

The method of flame ionization was used for measuring total hydrocarbons in both single-cylinder and multicylinder 4-cycle, direct injection diesel engine exhaust. Use of the emission parameters of hydrocarbon concentration, per cent unburned fuel, specific hydrocarbon rate, mass of hydrocarbons per million cycles, mass of hydrocarbons per mile, and mass of hydrocarbons per ton-mile are discussed. The basic approach used in the flame ionization detector is shown. The hydrocarbon sample was transferred from the exhaust system through a heated sample line and oven operating at 375 F. The sample line was aspirated to reduce the sample residence time to 2 sec. The effect various sampling locations have on hydrocarbon measurements from a single-cylinder engine is shown and discussed. The effects of load, speed, and injection timing on hydrocarbon emission data are shown for a single-cylinder engine.
Technical Paper

“A Study of Factors Affecting Carburetor Performance at Low Air Flows”

Carburetor repeatability at idle was investigated both on the carburetor precision flow stand and on a chassis dynamometer equipped with exhaust emission test equipment. It was determined that some factors which significantly affect idle fuel flow repeatability on the carburetor test stand are: 1 Surface roughness of mating parts in the fuel bowl inlet system. 2 Inlet valve eccentricity. 3 Hydraulic shock in the fuel supply circuit. In addition, vehicle testing had demonstrated that carbon monoxide changes at idle may occur with constant fuel-air ratio due to changes in fuel temperature. Cycle tests have also shown a relationship between fuel temperature and carbon monoxide levels.
Technical Paper

“A Successful Electronic Ignition System thru Fundamental Problem Analysis”

For 1974, Ford Motor Company is providing, as standard equipment, a solid state ignition system on all 400 CID and 460 CID engines as well as on all California vehicles equipped with 200 through 351 CID engines. This paper explains the Ford solid state ignition system and the objectives and design philosophy that was used in the development of the system. Further, a review of the design and production validation test plans is discussed. With this background, specific examples of the effectiveness of complete problem analysis for fundamental cause and corrective action is presented in addition to control methods and evaluation of corrective action. This problem analysis system allowed this automotive electronic product to go into production with a high degree of confidence in meeting the reliability goals.
Technical Paper

“Active Mass Absorber” at a 4×4 Transmition System

The extensive use of rotative machines in the diverse branches of the modern world has made the rising undesirable mechanical and acoustic vibration levels to be a problem of special importance for the machines normal operation as for the communities that are each time more affected by the problem. It makes the study of vibration and acoustic phenomena also to be even more important and the applications of its concepts more sophisticated. Several are the concepts used for decreasing vibration levels, like common dampers, hydraulic dampers, active dampers, natural frequencies changes and others. The choice of use of one or another depends greatly on the engineering possibilities (weight, energy, physical space, other components functional interference, vibration levels, etc.) as well as the cost of implementation of each one.