Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

a new look at High Compression Engines

1959-01-01
590015
THE automotive and petroleum industries have been concerned for many years with the mutual problem of improving the thermal efficiency of gasoline engines. Great progress in refining technology, as well as advances in engine design in recent years, have made it desirable to take a new look at high-compression engines. This paper describes an investigation of the effect of compression ratio on engine efficiency over a range of compression ratios from 9/1 to 25/1. The results show that the thermal efficiency of the multicylinder engines used in this study peaked at a compression ratio of 17/1. The decrease in thermal efficiency at higher compression ratios is due primarily to delay in the completion of the combustion process. This paper received the 1958 Horning Memorial Award.
Technical Paper

a progress report — Dry-Type Air Cleaners on Farm Tractors

1959-01-01
590026
GREATER ease of servicing is one of the ultimate goals in the development of dry-type air cleaners. The authors acknowledge, however, that the oil-bath cleaner is a rugged proved component that has done a good job for the farmers who serviced it properly. This paper describes studies made in Illinois of oil-bath and dry air cleaners in field service. At the same fuel/air ratios, the maximum horsepower of a test engine was greater with the dry-type filter than with the oil-bath cleaner. It was found that with AC fine dust and steady airflow, the oil-bath cleaners had significantly lower efficiencies than the dry-type filter. At less than rated airflow the efficiency of the oil-bath cleaner decreased while that of the dry filter remained high.
Technical Paper

a study of Self-Contained Starting Systems for Turbojet and Turboprop Engines

1960-01-01
600011
SUBSTANTIAL POWER is necessary to start the modern jet engine. Thus, starting equipment has become a major concern of air transport operators. This paper discusses the equipment used with self-contained starting systems. The authors discuss and evaluate a variety of self-contained systems: combustor, fuel-air combustion, cartridge, liquid propellant, hydraulic supported by auxiliary power units, and electric supported by APU. Possible future systems are: self-breathing systems, oxygen combustors, and liquid-oxygen-water-fuel combustors. It is emphasized that the choice of a starting system for a particular aircraft will depend on aircraft characteristics and the aircraft's intended use.*
Technical Paper

a universal means for Rating Diesel Engines for Deposits and Wear

1960-01-01
600066
THE NEW CRC Diesel Engine Rating Manual is intended to furnish a universal language for identification of diesel-engine deposits and wear. Diesel-engine pistons are evaluated for lacquer deposits by utilizing an area demerit basis and color gradations of brown and gray from clean to black. In studying various means for evaluating thickness and texture of deposit in oil systems, it was decided that the scratch gage developed by the CRC Engine Deposit Rating Panel of the CRC-Motor Engine Varnish and Sludge Group was suitable for diesel engines. A procedure for establishing a volume factor which furnishes a weighted interpretation of the deposit was created.*
Technical Paper

an evaluation of AFTERCOOLING in Turbocharged Diesel Engine Performance

1959-01-01
590049
AFTERCOOLING, coupled with higher pressure turbocharging can increase vehicle engine output. The author thinks that it is possible to anticipate diesel engines being run with compressors supplying air at pressure ratios higher than 2/1. Density ratio is the most important consideration in increasing pressure ratio, since the engine's output is dependent upon weight rather than volume of air supplied. Because the density of the compressed air is dependent upon its temperature at any pressure level, cooling the air after compression results in density increases. This paper describes various methods of after-cooling which increase engine output and fuel economy.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

basic design of Turbochargers for diesel engines

1960-01-01
600007
ALTHOUGH turbocharging of low-speed diesel engines has been used world-wide for a long time, it is only during recent years that it has been applied to high-speed diesels. This is the result of considerable engineering efforts from both the turbocharger and the diesel side that were put into the turbocharger, which appears to be a so utterly simple device. This paper de­scribes some of these engineering efforts. The basic design characteristics are developed with the point of view in mind that the turbo­charger has become much more than just an ad­ditional accessory. It is a vital component of the basic engine itself, contributing actively to the advancement of this prime mover. The basic de­sign characteristics center heavily around aero­dynamical and thermodynamical performance cri­teria which are so important in any advanced high-speed turbomachine.
Technical Paper

considerations of some JET-DEFLECTION PRINCIPLES for - - directional control - - lift

1958-01-01
580062
THE performance characteristics of various devices applicable for jet directional control, lift augmentation, and VTOL-STOL studied at the NACA Lewis Laboratory are discussed, including jet deflection devices applicable to the conventonal round nozzle and novel nozzle configurations. The results indicate that many of the deflection devices applicable to conventional nozzles can readily be used for directional control or lift augmentation. Other deflection devices, such as movable plug, internal flap, cylindrical thrust reverser, swiveled primary with fixed shroud, and 90 deg side-bleed nozzle, are limited in application to jet directional control or aircraft trim because the loss in axial thrust for a given deflection force is prohibitive or the maximum deflected force obtainable is limited.
Technical Paper

development of two new Allis-Chalmers Diesel Engines

1960-01-01
600023
THE NEW DIRECT-INJECTION diesel engines — the naturally aspirated 16000 and the turbocharged 21000 — were developed to power specific crawler and wheel vehicles built by Allis-Chalmers. Thus the original design and performance specifications were defined by the space available in these machines, and by the power and torque characteristics required by them. Also, the engines had to be suitable not only for commercial applications such as generator sets, shovels, and compressors, but also for oil field and marine service. Torque and speed requirements indicated that a 5¼-in. bore and 6½-in. stroke would give the desired performance. To meet the low heat rejection and good starting requirements, an open-chamber combustion system had to be used. The three-valve arrangement — two intake and one exhaust — was chosen because it offered low pumping losses and reasonable cost. This paper describes the design considerations and development work which produced the new diesel engines.*
Technical Paper

e Vehicle Cooling System Approach for Off-Highway Machines

2024-09-19
2024-28-0053
Traditionally the off-highway vehicles like tractors, construction and road building machinery have been using diesel engine as the power source. In recent times there has been more and more focus to adopt either all electric or hybrid powertrain for off highway vehicles to reduce the carbon footprint. The e machines involve various electrical components like Battery pack, On board Charger, DC/DC converter, Inverters, Traction motors, PTO Motor and e transmission. The cooling requirement and the fluid temperature limits for these electric components is different compared to the conventional engine. In most of the cases the battery cell temperature needs to be around 20 to 30 °C which in most cases would be below the ambient temperature. Whereas the hydraulic oil temperature can be as high as 100 °C. The hydraulic oil temperature can be maintained using a separate air-cooled hydraulic oil cooler or a plate cooler.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

e-Thermal: Automobile Air-Conditioning Module

2004-03-08
2004-01-1509
e-Thermal is a vehicle level thermal analysis tool developed by General Motors to simulate the transient performance of the entire vehicle HVAC and Powertrain cooling system. It is currently in widespread (global) use across GM. This paper discusses the details of the air-conditioning module of e-Thermal. Most of the literature available on transient modeling of the air conditioning systems is based on finite difference approach that require large simulation times. This has been overcome by appropriately modeling the components using Sinda/Fluint. The basic components of automotive air conditioning system, evaporator, condenser, compressor and expansion valve, are parametrically modeled in Sinda/Fluint. For each component, physical characteristics and performance data is collected in form of component data standards. This performance data is used to curve fit parameters that then reproduce the component performance.
Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Technical Paper

eROSITA Camera Low Temperature Thermal Control

2008-01-29
2008-01-1957
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
Technical Paper

if you squeeze them, must them SCREAM?

1959-01-01
590023
TODAY'S high-compression engines present new problems of engine noise to automotive engineers. This paper deals with some of the factors which contribute to rumble, knock, and surface ignition. The work was primarily concerned with the influence of fuel composition on the equilibrium octane number requirement and surface ignition tendency of high-compression engines. Both the effect of the combustion-chamber deposits formed by the fuel and the effect of the combustion characteristics of the fuel itself were considered. The results indicate that a reduction in gasoline tail-end volatility or the use of an effective ignition control additive can reduce knock, surface ignition, and rumble; while use of gasolines containing high concentrations of aromatic hydrocarbons can increase these combustion difficulties.
Technical Paper

knock-knock: Spark Knock, Wild Ping, or Rumble?

1959-01-01
590019
ENGINE noise has become an increasing problem with the higher and higher compression ratios of present-day automotive engines. Because fuel octane number cannot be raised indefinitely, the problem is one of engine design and selection of crankcase lubricating oils and gasoline formulations, the authors think. This paper describes investigations into the cause of spark knock, wild ping, rumble, and the added problem of hot-spot surface ignition (which also intensifies as compression ratios increase). The authors have found gasolines with phosphorous additives, used with properly formulated multiviscosity lubricating oils, provide a partial answer to the problem of engine rumble. The authors conclude that very exact tailoring of fuels, lubricants, additives, and engines will be necessary to prevent engine noise if compression ratios continue to rise.
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Article

magniX and AeroTEC to fly all-electric eCaravan May 28

2020-05-21
Mobility is in the midst of an electric revolution, propelled by industry innovators such as magniX. Headquartered in Redmond, Washington, the magniX team is focused on revolutionizing electric motors for commercial aviation applications.
X