Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Where is The HSDI Diesel Engine Going?

2004-01-16
2004-28-0065
Thanks to the modern DI diesel's well known features, such as high thermal efficiency, excellent driveability, durability, low operating cost, the market share of diesel passenger cars in Europe has grown from 14% in 1990 to 33% in 2000 and it still continues to grow. However, the foreseeable evolution of exhaust emission legislation gives rise to the question whether the passenger car diesel engine can preserve its undeniable advantages at competitive system cost in the future. The present paper deals with the criteria decisive for market success such as engine performance, speed range and light weight design. Following is an assessment of the current and future technological elements required to meet the standards placed on both fuel economy and exhaust emissions. Based on these analyses development strategies for future passenger car diesel engines are suggested.
Technical Paper

Which Fuel Properties for Improved CAI Combustion? Study of Fuel Impacts on the Operating Range of a CAI PFI Engine

2009-04-20
2009-01-1100
This paper presents the major results of an International Consortium study carried out by IFP and focused on the evaluation of fuel impacts on Controlled Auto Ignition (CAI) combustion. The formulation and tests of two adapted fuel matrix have allowed identifying and evaluating the main fuel properties that can improve CAI combustion for a maximum enlargement of the CAI operating range. CAI combustion mode appears as one promising solution for the development of low CO2 gasoline engines. Fuel properties can then be key parameters to improve the performances of CAI engines. During a first step of the study, steady state tests have been performed on a single cylinder Port Fuel Injection Spark Ignition (PFI SI) engine, with real fuels.
Technical Paper

Which Would be Better, the S.I or C.I Engine, from the View Point of Fuel Consumption?

1981-11-01
811374
First, by means of the cycle theory the comparison study was made on the basic concept of fuel consumption in pre-mixed-homogeneous cycle and stratified-charge-heterogeneous cycle. In the next, the practical data of efficiency in both engines are compared and the differences arosen on efficiency and that causing reasons discussed basically on the view point of theory of cycle and combustion. Some suggestive conclusions were introduced as follows. 1. Specific heat of gas during combustion is one of the most influencial factors on efficiency. 2. The efficiency at low load in pre-mixed cycle is higher theoretically and practically lower than that operated at full load. 3. if the lean homogeneous rapid combustion is attained, the efficiency will be dramatically high. 4. The efficiency at low load in stratified charge cycle is higher theoretically and practically than that operated at full load. 5.
Technical Paper

Why Intake Charge Dilution Decreases Nitric Oxide Emission from Spark Ignition Engines

1971-02-01
710009
This study was undertaken to develop a better understanding of how intake charge dilution by various gases affected nitric oxide (NO) emission from a single-cylinder spark ignition engine. Carbon dioxide, nitrogen, helium, argon, steam, and exhaust gas were individually added to the intake charge of a propane-fueled, single-cylinder engine operated at constant speed and load. Nitric oxide emission was reduced in all cases. The gases with higher specific heats gave larger NO reductions. The product of diluent flow rate and specific heat correlated with NO reduction. The effects of diluents on calculated combustion temperature, mbt spark timing, and fuel consumption are also presented and discussed.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

Wide Range Air-Fuel Ratio Control System

1988-02-01
880134
A new air-fuel ratio control algorithm and its effect on automotive engine operation is described. The system consists of a wide range air-fuel ratio sensor and a single point injector with an ultrasonic fuel atomizer. The air-fuel ratio control adopts PID control and it has built-in learning control. A 16 bit microcomputer is used for the latter. The results of three studies are given. The first deals with adaptive PID gain control for various conditions. The second is the new learning control which uses an integration terra. The third is individual cylinder air-fuel ratio control.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1986

1986-02-01
860409
The oxygen ion conductive solid electrolyte cell served as a device for measuring the combustibles content and the oxygen content of an exhaust gas. The cell is comprised of a tubular electrolyte, two opposed electrodes and a porous diffusion layer located on the outer electrode surface. The sensor is employed to measure both rich and lean air fuel ratio through the use of an electronic circuit pumping the oxygen ions to achieve a constant voltage between the electrodes. The wide range detecting capability makes it particularly attractive for air fuel ratio control applications associated with the internal combustion engine. The result of the performance tests are as follows, Detecting range (air excess ratio λ) : 0.8 - “∞ Step response time constant (63%) : 200ms Warm up time. - less than 80 sec at 20°C We found in the durability test concerned with the heat cycle and contamination that if initial aging treatment is applied the output variation ratio (. λ/λ) is limited with in : 5%.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1989

1989-02-01
890299
The detection range of an air-fuel ratio sensor is expanded in the rich A/F region. Using a simulation technique, the limiting cause of the detection range in the rich A/F region is identified as insufficient combustion rates of CO and H2 with O2 on the electrode, which prevent realization of a limited diffusion state which is necessary to detect the air-fuel ratio. Applying an improved diffusion layer to decrease the diffusion rates and an improved electrode to increase the combustion rates, it is demonstrated that the detection limit can be expanded to λ=0.6 while that of a conventional sensor is λ=0.8.
Technical Paper

Wideband SI Engine Lambda Control

1998-02-23
981065
Long term control of the AFR (Air/Fuel Ratio) of spark ignition engines is currently accomplished with a selvoscillating PI control loop. Because of the intake/exhaust time delay, the oscillation frequency and hence bandwidth of this loop is small. This paper describes a new approach to the design of this control loop using a novel observer system. In this way the bandwidth of this important loop is increased by a factor of 2 - 6 times, leading to more accurate overall AFR control. Moreover the observer approach is so robust and allows such feedback levels that it reduces significantly the accuracy required in the calibration of the base fuel control system with which it is be used. It can be used with either conventional- or advanced observer based- base fuel strategies.
Technical Paper

Windowed Selected Moving Autocorrelation (WSMA), Tri-Correlation (TriC), and Misfire Detection

2005-04-11
2005-01-0647
In this paper, two correlations, Windowed Selected Moving Autocorrelation (WSMA) and Tri-Correlation (TriC), are introduced and discussed. The WSMA is simpler than the conventional autocorrelation. WSMA uses less data points to obtain useful signal content at desired frequencies. The computational requirement is therefore reduced compared to the conventional autocorrelation. The simplified TriC provides improved signal to noise separation capability than WSMA does while still requiring reduced computational effort compared to the standard autocorrelation. Very often, computation resource limitation exists for real-time applications. Therefore, the WSMA and TriC offer more opportunities for real-time monitor and feedback control applications in the frequency domain due to their high efficiencies. As an example, applications in internal combustion (IC) engine misfire detection are presented. Simulation and vehicle test results are also presented in this paper.
Technical Paper

Winterized Methyl Esters from Soybean Oil:An Alternative Diesel Fuel With Improved Low-Temperature Flow Properties

1997-05-01
971682
Methyl esters from vegetable oils (biodiesel) are very attractive as alternative fuels for combustion in direct injection compression-ignition (diesel) engines. Biodiesel fuels have low-temperature flow properties that limit utilization during cooler weather in moderate temperature climates. Although winterization reduces the cloud point (CP) of methyl soyate from 0 to -2O°C, liquid product yields were relatively low (0.30-0.33 g/g). Winterization of methyl soyate-cold flow improver mixtures decreased CP by -11°C and increased yields to 0.80-0.87 g/g. Winterization of methyl soyate from hexane and isopropanol solvents gave similar results. Differential scanning calorimetry (DSC) analyses showed that nucleation mechanisms of methyl esters were significantly affected by winterization.
Technical Paper

Wire Mesh Mixer Optimization for DEF Deposit Prevention

2015-04-14
2015-01-0989
Diesel engine NOx emissions requirements have become increasingly stringent over the past two decades. Engine manufacturers have shown through the use of EGR and SCR technology that these requirements can be met. However, the desires for improved fuel efficiency, lower overall cost, and potential legislation to reduce NOx levels further increase the demand for higher DEF dosing rates. To meet this demand, a new DEF mixing technology has been developed. This paper describes the development methods used to create a compact, in-pipe mixer which utilizes an optimized wire mesh along with swirling flow to permit high DEF dosing rates without deposit formation. Its excellent mixing characteristics allowed for high NOx reduction to be achieved. Utilization of this technology makes it possible to reduce regeneration frequency, reduce the overall size of the SCR system, possibly eliminate the EGR system, and improve fuel efficiency through combustion enhancements.
Standard

Wire, Electrical, Crosslinked Polyalkene, Crosslinked Alkane-Imide Polymer, or Polyarylene Insulated, Copper or Copper Alloy

2019-07-08
CURRENT
AS81044B
AS81044 covers single conductor electric wires made as specified in the applicable detail specification with tin-coated, silver-coated, or nickel-coated copper or copper alloy conductors insulated with crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene. The crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene may be used alone or in combination with other insulation materials as specified in the detail specification.
Technical Paper

Working Fluid Properties Variation During Combustion in Premixed Charge Hydrogen Engines

2012-09-10
2012-01-1646
Several studies have been performed to investigate the effects of using hydrogen in spark ignition (SI) engines. One general conclusion that emerged was that stoichiometric operation of premixed charge hydrogen engines features increased losses compared to other fuels such as methane. Most studies attribute this higher loss to increased rates of heat transfer from the working fluid to the combustion chamber walls. Indeed, heat flux measurements during combustion and expansion recorded much higher values for hydrogen compared to methane stoichiometric operation. With regard to fluid properties, using the same net heat release equation as for gasoline engines results in an over prediction of heat losses to the combustion chamber walls. Also, the variation of specific heats ratio greatly influences calculated values for the rate of heat release. Therefore, a more detailed analysis of heat losses is required when comparing hydrogen to other fuels.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

1981-02-01
810008
In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.
Journal Article

X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

2017-09-04
2017-24-0178
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from the sparking event is difficult to obtain. In this paper, we present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug.
Technical Paper

X-Ray Radiography and CFD Studies of the Spray G Injector

2016-04-05
2016-01-0858
The salient features of modern gasoline direct injection include cavitation, flash boiling, and plume/plume interaction, depending on the operating conditions. These complex phenomena make the prediction of the spray behavior particularly difficult. The present investigation combines mass-based experimental diagnostics with an advanced, in-house modeling capability in order to provide a multi-faceted study of the Engine Combustion Network’s Spray G injector. First, x-ray tomography is used to distinguish the actual injector geometry from the nominal geometry used in past works. The actual geometry is used as the basis of multidimensional CFD simulations which are compared to x-ray radiography measurements for validation under cold conditions. The influence of nozzle diameter and corner radius are of particular interest. Next, the model is used to simulate flash-boiling conditions, in order to understand how the cold flow behavior corresponds to flashing performance.
Technical Paper

Zero Dimensional Combustion Modeling of an Axial Vane Rotary Engine

1997-02-24
970069
A zero dimensional combustion model of an axial vane rotary engine has been developed. The engine is a positive displacement mechanism that permits the four “stroke” action to occur in one revolution of the shaft with a minimum number of moving components. Current modeling efforts for this engine require improved estimations of engine parameters such as chamber pressure, chamber wall temperature, gas temperature, and heat loss. The purpose of this investigation was to develop a zero dimensional combustion model that predicts the above-mentioned parameters in a quick and accurate manner for a spark ignition or compression ignition version of the engine. For this effort, NASA's ZMOTTO code was modified. Piston engine data and the results from the modified ZMOTTO code are in good agreement.
Technical Paper

Zero Dimensional Models for EGR Mass-Rate and EGR Unbalance Estimation in Diesel Engines

2017-09-04
2017-24-0070
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flow-rates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
Technical Paper

Zero Emission Hydrogen Internal Combustion Engine for a 5 kW Mobile Power Generator: Conversion Strategy for Carburetted SI Engines

2023-08-28
2023-24-0183
A carburetted, spark ignited gasoline fuelled engine of a 5 kW rated power generator was converted to run on hydrogen. As opposed to large parts of current research, the engine conversion’s foremost goal was not to maximise efficiency and power output but rather to find a cost-effective and low-complexity conversion approach to introduce clean fuels to existing engines. To allow for the increased volumetric fuel flow, the riser of the original carburettor was enlarged. The hydrogen flow into the venturi was metered with the help of a pressure regulator from a widely available conversion kit. The effects of different hydrogen-fuel-feed pressures on engine performance, operational stability and emission levels were examined experimentally. It was found that the hydrogen-line pressure before startup has to be set precisely (±5 mbar) to allow for stable and emission free operation.
X