Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

X-29 Fuel/Auxiliary Oil Systems Thermal Management

1986-07-14
860913
The X-29 Fuel/Auxiliary Oil Thermal Management System provides total aircraft accessory oil cooling, including both flight and combined hydraulics, Integrated Drive Generator oil, and Accessory Drive Gearbox oil, with onboard fuel. Fuel cooling rates that are independent of engine demand are achieved through the use of a recirculation loop. Recirculation is minimized by maintaining the engine fuel inlet temperature at the maximum allowable. Fuel cooling results in lower, more uniform subsystem oil temperatures, less ram drag, and smaller, lighter-weight heat exchangers. Initial design studies and laboratory development testing will be discussed, along with comparisons of analytical predictions with flight test results.
Technical Paper

X-29 High AOA Flight Test Results: An Overview

1993-04-01
931367
An extensive high angle-of-attack (AOA) flight testing program has been performed with the X-29-2 (AF 82-0049) forward swept wing research aircraft. The high AOA envelope expansion phase cleared the aircraft to fly in a broad flight regime and produced important data on the high AOA clearance process and data analysis. Lessons learned during the military utility phase on the tactical advantages and disadvantages associated with high AOA maneuvering are impacting programs such as the X-31, HARV, and F-22. Insight on the critical forebody flow-field of the X-29 at high AOA was gained using on-surface pressure measurements and off-surface flow visualization during the aerocharacterization phase. The Vortex Flow Control (VFC) experiment conducted on the X-29 successfully proved the viability of a pneumatic blowing device manipulating forebody vortices to act as an aircraft controller, an historical first.
Technical Paper

X-29A Subsystems Integration - An Example for Future Aircraft

1988-10-01
881504
The X-29A is the first X-series experimental aircraft developed in the United States since the mid-sixties. The X-29A is a technology demonstrator aircraft that integrates several different-technologies into one airframe. Among the technologies demonstrated are the aeroservoelastically tailored composite forward swept wings, close coupled canards, discrete variable camber wing, triplex digital flight control system with analog backup, thin supercritical wing, three surface pitch control, large negative static margin and the integration of these technologies into the X-29 airframe. This paper deals with the issue of technology integration of five of the X-29A subsystems and the early design decision to use existing aircraft, components whenever and wherever possible. The subsystems described are the X-29 aircraft Hydraulics System, the Electrical Power System, the Emergency Power System, the Aircraft Mounted Accessory Drive and the Environmental Control System.
Technical Paper

X-31 Helmet Mounted Visual & Aural Display (HMVAD) System

1994-10-01
942116
Agile aircraft (X-29, X-31, F-18 High Alpha Research Vehicle, & F-16 Multi-Axis Thrust Vector) test pilots, while flying at high angles of attack, experience difficulty predicting their flight path trajectory. To compensate for the loss of this critical element of situational awareness, the X-31 International Test Organization (ITO) installed and evaluated a helmet mounted display (HMD) system into an X-31 aircraft and simulator. Also investigated for incorporation within the HMD system and flight evaluation was another candidate technology for improving situational awareness - three dimensional (3D) audio. This was the first flight test evaluating the coupling of visual and audio cueing for aircrew aiding. The focus of the endeavor, which implemented two visual and audio formats, was to examine the extent visual and audio orientation cueing enhanced situational awareness and improved pilot performance during tactical flying.
Technical Paper

X-34: A Prelude to a Military Space Plane

1997-10-01
975629
The Military Space Plane program represents a major paradigm shift in the way spacecraft and launch vehicles are designed and operated. Now in its formative stages, the Military Space Plane, or MSP, strives for operational goals that blur the distinction between traditional spacecraft, launch vehicles and aircraft both from an operability and design standpoint. The X-34 rocket plane being built by Orbital at its Dulles, Virginia facility, represents a reusable technology testbed for evaluating new developments in launch vehicle subsystems and quick turnaround operations. These aspects of Reusable Launch Vehicle (RLV) design and operation are critical to achieving an MSP capability early in the 21st century.
Technical Paper

X-36 Tailless Agility Aircraft Subsystems Integration

1997-10-01
975505
The X-36 is a remotely piloted 28% scale model of a two-axis-unstable notional future fighter aircraft with canards, a mid-wing and features the absence of any vertical control surfaces, Figure 1. The aircraft was jointly developed by the NASA Ames Research Center and McDonnell Aircraft & Missile Systems and flight tested at the NASA Dryden Flight Research Center. Objectives of this program were to demonstrate fighter aircraft agility for a vertical tailless configuration and to demonstrate the development of a low cost alternative to full size prototype aircraft. This paper presents some aspects of the subsystem integration methodology used to develop the X-36 Tailless Agility Research Aircraft.
Technical Paper

X-38 Nose Skirt Panels - Results of Qualification Testing

2001-07-09
2001-01-2343
The X-38 vehicle will be used to demonstrate the future technology on durable TPS for the CRV. Astrium has produced two large CMC Nose Skirt side panels for the current X-38 configuration. The design of the 3 dimensional curved and large side panels comprises a light-weight, stringer stiffened concept which compensates the thermal expansion by a system of flexible metallic stand-offs. An optimum in flexibility and stiffness to fulfil all requirements had to be found: strong and stiff enough to carry the thermo-mechanical loads, but flexible enough to realise a fastening concept which does not fail due to thermal expansion. The fastening concept has been tested on development test level. Some thermal and mechanical tests on sub-structure level confirmed the design and analysis work of the complete TPS concept.
Technical Paper

X-Ray - A Necessary Tool for Detecting Incipient Structural Failures in Service Aircraft

1964-01-01
640510
X-ray is an indispensable aid in locating and determining the extent of incipient failures in structure which is inaccessible by position or covered by multiple layers of metal. It is also the most feasible method for checking oil coolers for contamination; bonded honeycomb panels for water; fuel lines for erosion; and with a 360 deg emission tube, fuselage frames for structural integrity without removing the interior upholstery and panels from the passenger compartment or cargo compartments.
Technical Paper

X-Ray Absorption Measurements of Diesel Sprays and the Effects of Nozzle Geometry

2004-06-08
2004-01-2011
In order to analyze the effects of nozzle geometry on the structure of fuel sprays, quantitative x-ray measurements have been performed on sprays from nozzles with different degrees of hydro-grinding. The two nozzles were measured at injection pressures of 500 and 1000 bar in an ambient environment of 1 bar nitrogen gas. Time-resolved x-radiography was used to measure the two-dimensional mass distributions of the spray as a function of time for the entire spray event. The initial mass flow through the nozzles was determined from the x-ray data, the nozzles showed no appreciable differences in the early part of the injection event. The transverse mass distributions were fit with Gaussian curves, and the assumption of axisymmetry was used to calculate the volume fraction of each spray. It was observed that the nozzle which had undergone extensive hydro-grinding generated a more dense spray than the sharp-edged nozzle at an injection pressure of 1000 bar.
Technical Paper

X-Ray CT-Scan Digitizing for the Inspection and Computational Analysis of Complex Engine Parts

1998-02-01
980307
This paper deals with the problem of complex engine part analysis. It presents an original approach based on the use of X-ray Computed Tomography scan digitizing method. In comparison with classical digitizing method, Computed Tomography method proves to be the only solution in the case of complex parts with internal areas. A validation example for which the precision of the method is estimated, is proposed. At last, the potential of the method is illustrated through the complex example of an engine head cooling circuit for which a computational CFD calculation is made.
Technical Paper

X-Ray Determination of Residual Stresses and Hardness in Steel Due to Thermal, Mechanical, and Fatigue Deformations

1962-01-01
620053
Residual stress and hardness in steel due to thermal, mechanical, and fatigue deformations are determined by an X-ray diffraction method. The sharp temperature rise associated with electrical discharge machining causes austenitizing, rehardening, and tempering, and results in high tensile residual stress. Shot-peening quality is evaluated from residual stress and hardness induced by the peening. Rolling contact fatigue of carburized and hardened bearings causes a transformation of austenite to martensite, and thereby generates more residual compression, and also causes permanent fatigue softening. Less softening is observed in inner races of consutrode and cross-forged steels than in air-melted steel, and the former steels exhibit greater fatigue life at early and mean failure levels.
Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

X-Ray Radiography and CFD Studies of the Spray G Injector

2016-04-05
2016-01-0858
The salient features of modern gasoline direct injection include cavitation, flash boiling, and plume/plume interaction, depending on the operating conditions. These complex phenomena make the prediction of the spray behavior particularly difficult. The present investigation combines mass-based experimental diagnostics with an advanced, in-house modeling capability in order to provide a multi-faceted study of the Engine Combustion Network’s Spray G injector. First, x-ray tomography is used to distinguish the actual injector geometry from the nominal geometry used in past works. The actual geometry is used as the basis of multidimensional CFD simulations which are compared to x-ray radiography measurements for validation under cold conditions. The influence of nozzle diameter and corner radius are of particular interest. Next, the model is used to simulate flash-boiling conditions, in order to understand how the cold flow behavior corresponds to flashing performance.
Technical Paper

X-Ray Rocking Curve Analysis of the Aging and Deformation Characteristics in the Al-Li Alloy

1989-04-01
891057
A non-destructive x-ray technique, the double crystal diffractometer method, is presented as a tool to investigate the aging and deformation behavior of the Al-Li alloy. This is a sensitive method for measuring the strain and dislocation density within individual grains through the x-ray rocking curve. In addition, models were developed to describe the aging and deformation characteristics of this alloy.
Technical Paper

X-Rays and Gamma Rays-Their Industrial Application

1937-01-01
370138
THE X-ray spectrum readily adapts itself to problems in chemical analysis and crystal formation. It is effective on very minute particles which otherwise cannot be segregated. A permanent record is made, and the specimens may be used over and over again, as the X-ray is non-destructive. As a means of inspection, X-ray clearly shows the interior of objects such as weldings castings, forgings, cold-worked metals, and so on. Inhomogeneities that are very slight in width and a fraction of one per cent in thickness are seen easily on a radiograph. Defects thus found may be eliminated summarily by checking various steps in production.
Technical Paper

X-Wing: A Low Disc-Loading V/STOL for the Navy

1985-10-01
851772
The X-Wing concept employs a single lifting system for all modes of flight. The lifting system is comprised of four very rigid, circulation control wings with blowing for lift modulation and control. For hover and low speed flight, the wings rotate such as the rotor of a helicopter. For high speed flight, the wings are stopped in an “X” configuration across the fuselage - from which the name of the concept is derived - with two forward-swept wings and two aft-swept wings. Such a vehicle is also envisioned to have an integrated gas turbine propulsive system for all flight modes. At low speeds, the gas generators) would drive a shaft to turn the wings and the circulation control compressor as well as a set of propulsive fans. For high-speed flight, the shaft would drive only the compressor and accessories as the fans propel the vehicle. The X-Wing concept has been underdevelopment for over 15 years.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Technical Paper

XB-70A Laboratory for Progress

1966-02-01
660276
The development of the XB-70 research aircraft produced advancements in many fields of technology. This paper covers a few of these advancements in the areas of materials, equipment, and manufacturing. These include honeycomb construction, PH 15-7 alloy steel, vacuum melted H-11 steel, equipment capable of withstanding high temperatures, chemical milling of many different alloys, miniaturized welding equipment, and exothermic brazing techniques.
Technical Paper

XB-70A Mach 3 Design and Operating Experience

1966-02-01
660274
The XB-70A represents the most advanced example of the evolution and technological advances of manned aircraft in the past decade. It is, in effect, the forerunner of SST type aircraft and in itself is responsible for many items or features that have been subsequently embodied in contemporary military aircraft. This paper describes the unique aerodynamic concepts and configuration of the XB-70A and its airborne systems. Results of the current flight test program are summarized along with discussions on “gremlin” areas during fabrication and flight testing, and how they were or are being solved. Examples of improvements in air vehicle No. 2 as a result of air vehicle No. 1 experience are presented, including a summary of major system reliability demonstrated during the flight test program as an indicator of the potential refinements in cost and performance possible for future large high-speed aircraft.
Technical Paper

XC-142A Control System

1967-02-01
670571
Five XC-142 aircraft have been manufactured to provide operational prototypes of a V/STOL tactical transport for tri-service evaluation. This paper presents a description of the flight control and stability augmentation systems. Special emphasis is placed on the programmed functions which are characteristic of VTOL airplanes. Proposed changes in the control systems of production models of the C-142 are identified, and the simulation and flight test programs are outlined.
X