Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wire Harness Simulation and Analysis Techniques

2000-03-06
2000-01-1293
An increasingly important, yet often underestimated task of modern vehicle design is the system interconnect, commonly known as the wire harness. The continual increase in on–board vehicle electronics is causing an exponential expansion in wire harness complexity. To meet these challenges, software tools have been developed to assist the harness designer in the various tasks from system partitioning to signal integrity analysis. This paper will discuss the key problem areas of the wire harness design, along with the design and analysis capabilities of the SaberHarness™ tool suite.
Technical Paper

Wire Segment Error Locating Algorithm for Wiring Connection Verification Tool

2008-04-14
2008-01-0408
Due to increasing amount of modules and customized options in commercial vehicles, it becomes more and more difficult to verify the circuit design. In this paper, a wire segment error locating algorithm is proposed to automate the exact wire segment error locating process. When a wrong connection is found by existing tool, guided by the exact description of wire segment error, this algorithm can locate exact wire segment error in the connection by searching for the one that has at least one neighboring segment from a correct connection.
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Wooden Pole Fracture Energy in Vehicle Impacts

1998-02-23
980214
Impacts with trees and wooden utility poles represent a significant subset of vehicular collisions. For example, while fixed object collisions account for less than 8% of all crashes, they represent nearly 30% of all fatal crashes. Also, nearly half (over 43%) of all fixed-object impacts are into a tree, pole, or post. This paper is viewed as a first attempt to understand the energy absorbing processes operating when vehicles strike trees and wooden poles in order to make reasonable estimates of the magnitude of the tree/pole energy dissipated in the crash. This initial study is comprised of a literature review, a series of scale model pole/pendulum impacts, and an analytical study which is comprised of both a static analysis and a dynamic finite element model (FEM) analysis of a vehicle/pole impact. As a result of this work, a methodology has been evolved for making estimates of tree/pole energy.
Technical Paper

Work-Energy Relationships for the Collinear Single Degree of Freedom Impact Model under the Case of Net Unbalanced Externally Applied Forces

2013-04-08
2013-01-0794
Externally applied unbalanced forces and their corresponding impulses are generally excluded from consideration in regards to the evaluation of the collision phase events for a system comprised of two motor vehicles undergoing collinear impact. This exclusion is generally warranted secondary to the fact that the collision force and its corresponding impulse are dominant during the collision phase. Conceptually, two exclusions exist to this approach. The first is the situation in which significant physical restraints are present to the displacement of one or both collision partners and are of sufficient magnitude as to require inclusion. Generally, this represents the exceptional case and includes, but is not limited to, situations in which one vehicle is snagged, in a non-eccentric manner, by a rigid narrow-width object such as a pole or other similar restraint, prior to the occurrence of the subsequent vehicle-to-vehicle collision under evaluation.
Book

Workflow Modeling: Tools for Process Improvement and Application Development, Second Edition

2008-01-01
This extensively revised second edition of the acclaimed and bestselling book, Workflow Modeling serves as a complete guide to discovering, scoping, assessing, modeling, and redesigning business processes. Taking into account the feedback from clients, workshop students, business professionals and other readers of the first edition, the authors have created this thoroughly updated and expanded resource, offering you clear, current, and concise guidance on creating highly effective workflow systems for your organization. Providing proven techniques for identifying, modeling, and redesigning business processes, and explaining how to implement workflow improvement, this book helps you define requirements for systems development or systems acquisition. By showing you how to build visual models for illustrating workflow, the authors help you to assess your current business processes and see where process improvement and systems development can take place.
Technical Paper

Workforce Enterprise Modeling

2007-09-17
2007-01-3834
Currently, many factors influence the NASA Kennedy Space Center (KSC) workforce. These factors include the drive for return to flight, a Shuttle Program end date of 2010, and the Vision for Space Exploration which calls for the development of a new launch vehicle. Additionally, external factors exist as well, such as the area's cost of living, the availability of skilled resources, and the unemployment rate affect the overall workforce climate. To manage the human capital in a manner consistent with safety and mission success, and to strategically position NASA KSC to execute its future mission, it is necessary to understand how all of these different influencing factors work together to produce an overall workforce climate. We have been using System Dynamics models in order to capture some of these factors. These system dynamics models are also the starting point of agent-based models.
Technical Paper

Working Activity in Space: Preparation of the Scientific Experiments' Performance

2005-07-11
2005-01-2957
One of the most unsolved problems in space projects, where human beings are involved, is the impossibility of simulating on the ground the effects of microgravity on astronauts' operability in space. [1] In particular, this is traceable in the performance of work activities, such as performing physiological scientific experiments. [2] This paper focuses on a study of the gap between the two operational scenarios: the ground test simulation and the in-flight space performance of complex physiological experiments. The major differences between the two operational scenarios are highlighted, and recommendations for improvement are suggested. The main finding of this paper is that, in order to make experiment performance not only possible but also easy and efficient, it is necessary to consider all human factors involved. With this perspective, the author's aim has been to find an effective way to consider all human factors of the ground and space operational conditions.
Journal Article

Worsening Perception: Real-Time Degradation of Autonomous Vehicle Perception Performance for Simulation of Adverse Weather Conditions

2022-01-06
Abstract Autonomous vehicles (AVs) rely heavily upon their perception subsystems to “see” the environment in which they operate. Unfortunately, the effect of variable weather conditions presents a significant challenge to object detection algorithms, and thus, it is imperative to test the vehicle extensively in all conditions which it may experience. However, the development of robust AV subsystems requires repeatable, controlled testing—while real weather is unpredictable and cannot be scheduled. Real-world testing in adverse conditions is an expensive and time-consuming task, often requiring access to specialist facilities. Simulation is commonly relied upon as a substitute, with increasingly visually realistic representations of the real world being developed.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Wound Field Synchronous Generator Out-of-Phase Paralleling Transient Analysis

2004-11-02
2004-01-3187
Paralleling synchronous generators requires a priori voltage matching and frequency synchronization. Exceeding normal limits can lead to severe electrical transients. The classical three-phase short circuit analysis is extended to include the case of two initially unloaded synchronous generators. An analytical solution is developed neglecting winding resistances and saturation. Of particular interest is the tendency to induce negative field currents that cause inverse voltages across the rotating rectifier in a brushless design. Typical aircraft generator parameters are used to predict the paralleling transient vs. initial rotor electrical angle mismatch. Results are compared to simulation and limited test results.
Technical Paper

X-29 ECS High-Alpha Modifications

1990-07-01
901221
It was anticipated that during X-29 extended duration, high angle-of-attack flight (40 to 70 deg), aircraft ECS performance would significantly degrade. Computer modelling of the system indicated that the performance of the ECS decreased as the angle of attack increased. Modifications to improve system performance were analyzed and, as a result of this analysis, ECS hardware modifications have been incorporated on the aircraft. The High-Alpha Flight Test Program has proven the validity of these modifications. To date, the ECS on Ship No. 2 has performed well within its nominal operating parameters in the high-alpha regime.
Technical Paper

X-36 Tailless Agility Aircraft Subsystems Integration

1997-10-01
975505
The X-36 is a remotely piloted 28% scale model of a two-axis-unstable notional future fighter aircraft with canards, a mid-wing and features the absence of any vertical control surfaces, Figure 1. The aircraft was jointly developed by the NASA Ames Research Center and McDonnell Aircraft & Missile Systems and flight tested at the NASA Dryden Flight Research Center. Objectives of this program were to demonstrate fighter aircraft agility for a vertical tailless configuration and to demonstrate the development of a low cost alternative to full size prototype aircraft. This paper presents some aspects of the subsystem integration methodology used to develop the X-36 Tailless Agility Research Aircraft.
Technical Paper

X-Ray CT-Scan Digitizing for the Inspection and Computational Analysis of Complex Engine Parts

1998-02-01
980307
This paper deals with the problem of complex engine part analysis. It presents an original approach based on the use of X-ray Computed Tomography scan digitizing method. In comparison with classical digitizing method, Computed Tomography method proves to be the only solution in the case of complex parts with internal areas. A validation example for which the precision of the method is estimated, is proposed. At last, the potential of the method is illustrated through the complex example of an engine head cooling circuit for which a computational CFD calculation is made.
Technical Paper

X-Ray Radiography and CFD Studies of the Spray G Injector

2016-04-05
2016-01-0858
The salient features of modern gasoline direct injection include cavitation, flash boiling, and plume/plume interaction, depending on the operating conditions. These complex phenomena make the prediction of the spray behavior particularly difficult. The present investigation combines mass-based experimental diagnostics with an advanced, in-house modeling capability in order to provide a multi-faceted study of the Engine Combustion Network’s Spray G injector. First, x-ray tomography is used to distinguish the actual injector geometry from the nominal geometry used in past works. The actual geometry is used as the basis of multidimensional CFD simulations which are compared to x-ray radiography measurements for validation under cold conditions. The influence of nozzle diameter and corner radius are of particular interest. Next, the model is used to simulate flash-boiling conditions, in order to understand how the cold flow behavior corresponds to flashing performance.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Technical Paper

Yaw Dynamics of Command Steered Multi Axle Semitrailer

2017-01-10
2017-26-0345
This paper investigates the yaw dynamic behaviour of a seven axle tractor semitrailer combination vehicle developed by VRDE (Vehicle Research & Development). The semitrailer has four steerable axles which follow command steering law i.e. all axles of semitrailer are steered in a particular relation with articulation of tractor. A 4 dof (degree of freedom) linear yaw plane model was developed for this combination vehicle. Yaw response characteristics such as lateral acceleration, yaw rate and articulation angle for step and sine steer is obtained from this model. Effects of speed on the above parameters are also studied to the same steering inputs. Lateral tyre forces due to semitrailer steering at various speeds are estimated to understand its distribution on each axle. Steady state yaw rate and articulation angle gain are obtained to predict the understeer / oversteer behaviour of combination vehicle.
Technical Paper

Yaw Rate Based Trailer Hitch Angle Estimation for Trailer Backup Assist

2017-03-28
2017-01-0027
In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
X