Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zeroshift Automated Manual Transmission (AMT)

2007-01-17
2007-26-061
Zeroshift technology allows a manual transmission to change gear in zero seconds. The Zeroshift Automated Manual Transmission (AMT) is easy to manufacture and allows a cost effective alternative to the traditional torque converter based automatic transmission. Zeroshift offers potential fuel economy improvements from driveline efficiency and the best possible vehicle acceleration. Compared to an existing AMT, Zeroshift offers an uninterrupted torque path from the engine to vehicle which allows for a seamless gearshift. This seminal paper provides an introduction to the technology together with test data from a demonstrator vehicle.
Technical Paper

Zeroshift. A Seamless Automated Manual Transmission (AMT)With No Torque Interrupt

2007-04-16
2007-01-1307
Zeroshift technology allows a manual transmission to change gear in zero time. The Zeroshift automated manual transmission (AMT) is easy to manufacture and allows a cost effective alternative to the traditional torque converter based automatic transmission. Zeroshift offers potential fuel economy improvements from driveline efficiency and the best possible vehicle acceleration. Compared to an existing AMT, Zeroshift offers an uninterrupted torque path from the engine to vehicle which allows for a seamless gearshift. This paper provides an introduction to the technology together with test data from a demonstrator vehicle.
Technical Paper

Zinc Alloy Engine Components

1988-02-01
880286
The ZA series of zinc alloys produce high strength die castings with the same cast-to size capability as the well proven SAE 903 alloy. The enhanced properties have been utilised in the two engine components described in this paper. ZA 27 has been used for the tooth belt drive camshaft pulley of a motorcycle engine and ZA8 has been used for the temperature resistant housing of a car ignition distributor.
Standard

Zinc Alloy Ingot and Die Casting Compositions

2018-01-09
CURRENT
J468_201801
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Technical Paper

Zinc Alloys for High Damping Applications–A First Progress Report

1988-02-01
880287
High damping capacity materials are useful in attenuating vibrations in mechanical structures such as functional automotive bracketry. The intrinsic damping properties of zinc alloys have only recently been systematically measured. Low and high frequency damping experiments have been conducted on die cast zinc alloys. and damping capacity has been measured as a function of temperature at high frequencies. The alloys show excellent damping properties over the range from 5 Hertz to a few hundred Hertz. for service applications from 40-80°C (104-176°F).
Technical Paper

Zinc Alloys: Specifications and Processing

1987-10-01
871952
Traditional and new zinc-based casting alloys for functional and decorative applications are reviewed. Their compositions and standard alloy specifications are described, and recommendations for casting process selection and prototyping of applications are offered. The information presented shows the versatility achievable with zinc alloys. It is aimed at helping part designers make the most effective use of zinc for their component requirements.
Technical Paper

Zinc Brazing of Automotive Aluminum Heat Exchangers

1993-03-01
930152
Provision of a layer of zinc on aluminium to provide the fillets for soldering is well established but this usually necessitates a thick layer of zinc (>30μm) and soldering at temperatures below 450°C. New technology has been developed to enable sound joints to be made on aluminium heat exchangers using a much thinner layer of zinc (4 to 8 μm typically) on the aluminium component to provide the joint. By the correct combination of flux and zinc coating thickness, joints have been obtained over a wide range of heating conditions. Preferred temperature cycles are similar to those used by the industry today for brazing of Aluminium:Silicon braze-clad aluminium components which should facilitate tranfer by industry to the new technology.
Technical Paper

Zinc Casting Alloys—A Comparative Properties Analysis

1987-10-01
871953
The preceeding presentation explained the compositions of the zinc alloys. Now we can examine the properties that these combinations give rise to. In doing so, we must first understand the importance of each property to the design of any component. One must consider each of the properties individually so as to gain an understanding of cumulative effects and the relative importance of each property to the final application. The most effective way to attack the problem is to analyze the part's requirements with respect to applied stresses, environmental and operating conditions and economic constraints. While there are many mathematical models available to enable numerical analysis of property evaluations, they all rely on the same basic principle: The Total Systems Approach. That is, the consideration of all aspects of design. Properties evaluation is a critical step in this process.
Technical Paper

Zinc Coated Press-Hardening Steel - Challenges and Solutions

2015-04-14
2015-01-0565
Press-hardening steels get more and more popular for body in white applications as an approach to meet the demands of passenger safety and CO2 reduction. Unlike the larger part of the structure that is typically zinc coated, the majority of the PHS parts is either uncoated or aluminum silicon coated. This paper shall give an overview of press-hardening steels with zinc coatings with detailed results for corrosion resistance, weldability and mechanical properties for strength levels of 490 to 1800 MPa. Furthermore as for zinc coated material maintaining a robust press-hardening process is of even higher importance than for uncoated or AlSi coated material. A range of different processes including indirect and direct process are shown in detail. Especially the topic of micro-cracks, mechanisms and avoidance of micro-cracks in the direct process will be discussed. Results from industrial and semi industrial production are shown.
Technical Paper

Zinc Coating Influence on Spot-Weldability of Hot-Dip Galvanized Steel Sheets

1985-02-01
850273
HOT-DIP galvanized steel sheets have been increasingly used in the automotive industry. However, two major problems occur during spot-welding because of the presence of zinc: 1/ Welding parameters differ from those used for bare sheets 2/ Electrodes life span often decreases. Two products have been thoroughly tested: 1/ Usinor MONOGAL® sheet 2/ Two-sides hot-dip galvanized sheet with various zinc-coating thicknesses. Welding parameters have been optimized by the determination of weldability lobes. Both products present a wide range of intensities, provided that weld current and electrode force are increased. The effect of an enventual variation of zinc-coating thickness is negligible. Electrodes life satisfies the FORD 2000 spot welds acceptance test. At last, temperature measurements inside the electrodes have shown the interest in increasing the electrodes tip diameter.
Technical Paper

Zinc Dialkyldithiophosphate-Dispersant Interactions: Effects on Solution Behavior and Wear

1992-10-01
922282
Interactions between a Zinc dialkyldithiophosphate (ZDP) and three different commercially available succinimide dispersants were observed through changes in solutions behavior, as determined by viscometry and Fourier Transform Infrared spectroscopy (FTIR), and four-ball tests. The viscometric response observed for two component blends of ZDP and succinimide dispersant in white oil changed as a function of the molar Zn to N ratio, indicative of specific interactions. The break in the viscometric response curve occurred at Zn:N=0.13 for all three succinimide dispersants. FTIR spectra of the same ZDP-dispersant blends were examined and similar Zn:N dependencies were observed. Four-ball tests measuring wear scar diameter, seizure load and weld load showed a dependence on the Zn to N ratio similar to that observed by viscometry. At very low Zn to N ratios wear and seizure load were decreased, while at higher ratios the seizure and weld loads were increased over that for ZDP alone.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Technical Paper

Zinc Die Castings for Automotive Applications

2011-04-12
2011-01-1087
Zinc die casting products and metal casting processes continue to evolve for the benefit of end users. Through cooperative global research programs continuous improvements are still being made to the broad range of excellent mechanical properties, easy castability and the wide choice of finishes available for zinc die castings. Recent advances will be highlighted with case histories specific to automotive applications.
Technical Paper

Zinc Die Castings in Automotive Applications

1987-10-01
871955
The role of zinc die castings in the materials marketplace has changed significantly in the last generation. In response to a shift in the available market, the industry has made major advances intended to improve competitiveness in both traditional and non-traditional areas. Better efficiency and performance have been achieved by the application of new methods and technologies. The ZA alloys, introduced to die casting during the last decade, have markedly expanded the capabilities of both zinc and the die casting process. This paper presents a review of several zinc die castings used in automatic applications.
Technical Paper

Zinc Diecast Die Design for Plating Applications

1983-02-01
830178
AS PART of its continuing research to improve the die casting process, International Lead Zinc Research Organization, Inc. has prepared a computer program, “Computer-Aided Design for Zinc Die Casting Dies,” which will enable a die caster to design the metal flow system for a die within a matter of minutes—simply and more accurately than ever possible, previously. It is helping convert what has been an art into a science.
Technical Paper

Zinc Distribution in Vacuum Brazed Alclad Brazing Sheet

1978-02-01
780301
Vacuum brazing technology is currently capable of producing aluminum automotive heat exchangers such as radiators and heater cores. The possible use of 7072 claddings on the surfaces exposed to the coolant to provide additional corrosion protection is of considerable interest. This paper describes the effect of typical vacuum brazing cycles on the distribution of zinc in 7072 clad vacuum brazing sheet. For heavier gauges (.05″), there is sufficient retained zinc in the post-braze composite. For lighter gauges (.02″ or less), nominal composition 7072 does not provide adequate retained zinc; however, if the initial zinc concentration is increased to 3% there is sufficient retained zinc so that the cladding is significantly more anodic than the core.
X