Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Journal Article

State of the Art and Future Trends of Electric Drives and Power Electronics for Automotive Engineering

2014-04-01
2014-01-1888
Discussions about the optimal technology of propulsion systems for future ground vehicles have been raising over the last few years. Several options include different types of technologies. However, those who are advocating conventional internal combustion engines are faced with the fact that fossil fuels are limited. Others favor hydrogen fuel as the solution for the future, either in combination with combustion engines or as an energy carrier for fuel cells. In any case, the production and storage of hydrogen is an ongoing challenge of numerous research works. Finally, there are battery-electric or hybrid propulsion systems in use, gaining more and more popularity worldwide. Ongoing advances in power electronics help to improve control systems within automotive applications. New developed or designed components enable more efficient system architectures and control.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper

Real World Operation of a Standard Lawn Mower Engine from a Scientific Perspective

2013-10-15
2013-32-9124
This paper introduces a research project on a spark ignition engine used in non-road applications. The aim is to illustrate the present situation as basis for comparison and to identify possible improvement potential in terms of performance, efficiency or exhaust and noise emissions. The study is carried out in two steps. First a standard walk-behind lawn mower is equipped with measuring instrumentation for recording the cutting forces and the engine variables during real world operation. The tests are carried out on three different lawn types and two different blade types are investigated. Consequently, in a second step the engine is analysed on the engine test bench in stationary and transient operating mode. A complete engine mapping is done regarding all relevant variables. Additionally to the outdoor tests, fuel consumption and engine out emissions are measured on the engine dynamometer. The recorded data enables a detailed analysis of the engine behaviour.
Technical Paper

A Demonstration of Emissions' Behaviour of Various Handheld Engines Including Investigations on Particulate Matter

2013-10-15
2013-32-9130
To get an overview of the emission situation in the field of small non-road mobile machinery powered by various types of SI engines, the Association for Emissions Control by Catalyst (AECC), together with the Institute for Internal Combustion Engines and Thermodynamics (IVT) of Graz University of Technology, conducted a customized test program. The main goal for this campaign was to derive information regarding the emissions of regulated gaseous components (following European Directive 97/68/EC) as well as particulate matter. With regard to the big variety of different engines that are available on the European and North-American market, the most representative ones had to be chosen. This resulted in a pool of test devices to cover different engine working principles (2-Stroke and 4-Stroke), technological standards (low-cost and professional tools) and different emissions control strategies (advanced combustion and exhaust gas aftertreatment).
Technical Paper

Subjective Evaluation of Advanced Driver Assistance by Evaluation of Standardized Driving Maneuvers

2013-04-08
2013-01-0724
Advanced Driver Assistance Systems (ADAS) for collision avoidance/mitigation have already demonstrated their benefit on vehicle safety. Often those systems have an additional functionality for comfort to assist the driver in non-critical driving. The verification of ADAS functionality using different test scenarios is currently investigated in many different projects worldwide. A harmonization of test scenarios and evaluation criteria is not yet accomplished. Often, these test scenarios focus on objective collision avoidance and not on the subjective interaction between driver and vehicle. The present study deals with the development of an experimental validation plan for the systems Automatic Cruise Control (ACC), Lane Departure Warning (LDW) and Lane Keeping Assist (LKA). Standardized driving maneuvers with two or more vehicles equipped with synchronized measurement are performed by professional test drivers.
Journal Article

A ‘Microscopic’ Structural Mechanics FE Model of a Lithium-Ion Pouch Cell for Quasi-Static Load Cases

2013-04-08
2013-01-1519
This study deals with the experimental investigation of the mechanical properties of a lithium-ion pouch cell and its modelling in an explicit finite element simulation code. One can distinguish between ‘macroscopic’ and ‘microscopic’ modelling approaches. In the ‘macroscopic’ approach, one material model approximates the behaviour of multiple inner cell layers. In the ‘microscopic’ approach, which is used in the present study, all layers and their interactions are modelled separately. The cell under study is a pouch-type lithium-ion cell with a liquid electrolyte. With its cell chemistry, design, size and capacity it is usable for automotive applications and can be assembled into traction batteries. One cell sample was fully discharged and disassembled, and its components (anode, cathode, separator and pouch) were examined and measured by electron microscopy. Components were also tensile tested.
Technical Paper

Fundamental Investigations on the Boost Pressure Control System of Charged Aircraft Engines in the Aviation Class ELA1 / Approved Systems Versus New Solutions

2012-10-23
2012-32-0048
Aircraft engines in the (ELA1) category, with a maximum power of up to 100kW, are characterized by a verified state of the art technology. New developments of engine technologies and control methods are very slowly being introduced into this engine segment. This trend is based on the fact that new technologies implemented in aircraft engines must be thoroughly certified and validated in a very complex and documented procedure. For this reason, most of the engines in this class are equipped with a carburetor as an air/fuel mixture preparation system. Moreover, naturally aspirated spark ignited engines are widely used in the aircraft category, with a take-off weight of up to 1000kg.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Journal Article

Elaborate Measuring System for Sensitivity Analyses and In-Depth Investigations of a Squealing Brake System

2012-06-13
2012-01-1541
Brake squeal is an elusive problem which has been the subject of investigation for many decades, but there is still a lack of knowledge regarding the excitation mechanisms. New vehicle solutions, for instance the electrical vehicle, will have a lower general noise level. Thus, silent brake systems will gain in importance. To obtain such systems, in-depth investigations of the brake disc/pad contact are required. For these investigations a new sensor has been developed. The guide pins of the caliper are replaced by modified ones which measure the friction force. Additionally, eddy current sensors are installed for contact-free measurement of the pad movement. Furthermore, triaxial acceleration sensors are mounted in the disc vents. Thus, it is possible to evaluate the operational deflection shapes of the disc. Next, an extensive sensibility analysis is performed. Parameters such as environmental conditions, friction coefficient and many others are thereby changed.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

A Demonstration of the Emission Behaviour of 50 cm3 Mopeds in Europe Including Unregulated Components and Particulate Matter

2011-11-08
2011-32-0572
The European emission legislation for two-wheeler vehicles driven by engines of ≤ 50 cm₃ is continuously developing. One of the most important issues in the near future will be the finalization of the European Commission's proposals for future steps in the emissions regulations as well as the verification of the impacts of current standards on the market. To have a basis for the discussion about these topics, the Association for Emissions Control by Catalyst (AECC) with the Institute for Internal Combustion Engines and Thermodynamics of Graz University of Technology (IVT) carried out an extensive test program to show the actual emission situation of state-of-the-art mopeds including mass and number of particulate matter as well as unregulated gaseous components. One of the main goals of these tests was to measure exhaust emissions without any modifications to the engines of standard production vehicles available on the European market.
Technical Paper

Concept Study of Range Extender Applications in Electric Scooters

2011-11-08
2011-32-0592
Nowadays, politicians are forced by air pollution prevention to demand zero emission vehicles (ZEV) in the form of pure electric vehicles. The poor capacity to weight factor of actual batteries compared to any kind of liquid or gaseous hydro-carbon fuel is the main reason for the retarded implementation of ZEV. Solutions offered by automobile manufacturers are mild to full hybrid powertrains based on the well established ICE platform. The difficulty of those approaches of electrification is to compete with the performance and benefit costumers expect from standard automobiles. Pure electric vehicles are rare and often disappointing regarding range and/or performance. Additionally the costs for such vehicles, which are mainly driven by the battery prices, are comparatively high, impeding their market entrance and acceptance. Low price electric city scooters are actually offered as pure electric vehicles in a wide variety of different models.
Journal Article

Novel Range Extender Concepts for 2025 with Regard to Small Engine Technologies

2011-11-08
2011-32-0596
Energy politics and environmental circumstances demand novel strategies for private transport. Several studies have shown that one of these possibilities can be an electric vehicle with a range extender - REX. Today these REX engines are under way as derivation from modern internal combustion engines. As the need for an optimized usage of energy will further increase in the future, alternative energy converter systems have to be investigated. For DENSO, as supplier of components, it is of strong interest how the basic layout of these concepts could look like. This is necessary in order to be prepared for the specific needs of these concepts in terms of auxiliaries, electric / electronic components as well as for the cabin climate & various control strategies. In these REX-concepts all energies have to be considered. A sophisticated usage of energy inside a REX vehicle is required which leads to the investigation of a combined heat and power usage on-board.
Technical Paper

Mechanical Design of In-Wheel Motor Driven Vehicles with Torque-Vectoring

2011-10-04
2011-36-0132
Volatile oil prices and increased environmental sensitivity together with political concerns have moved the attention of governments, automobile manufacturers and customers to alternative power trains. From the actual point of view the most promising concepts for future passenger cars are based on the conversion of electrical into mechanical energy. In-wheel motors are an interesting concept towards vehicle electrification that provides also high potentials to improve vehicle dynamics and handling. Beside aspects concerning the electric system (e.g. motor type, energy storage, and control strategy), there are also some open questions related with the mechanical design of in-wheel motor driven vehicles that need to be solved before series production.
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Journal Article

Reed Valve CFD Simulation of a 2-Stroke Engine Using a 2D Model Including the Complete Engine Geometry

2010-09-28
2010-32-0015
CFD has been widely used to predict the flow behavior inside 2-stroke engines over the past twenty years. Usually a mass flow profile or a simple 0D model is used for the inlet boundary condition, which replaces the complete intake geometry, such as reed valve, throttle, and air box geometries. For a CFD simulation which takes into account the exact reed valve geometry, a simulation of all above mentioned domains is required, as these domains are coupled together and thus interact. As the high speed of the engine affects the opening dynamic and closure of the reed valve, the transient data from the crank case volume and the section upstream the reed valve have an important influence on the reed petal dynamic and therewith on the sucked fresh air mass of the engine. This paper covers a methodology for the transient CFD simulation of the reed petals of a 2-stroke engine by using a 2D model.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Journal Article

New and Innovative Combustion Systems for the H2-ICE: Compression Ignition and Combined Processes

2009-04-20
2009-01-1421
Hydrogen nowadays is considered one promising energy carrier for future mobility scenarios. Its application as a fuel in ICEs greatly benefits from Direct Injection (DI) strategies, which help to reduce the disadvantages of PFI systems such as air displacement effects, knocking, backfiring and low power density. In SI-engines one appropriate way to increase efficiency is the reduction of wall heat losses by jet- and/or wall-guided mixture formation systems. In theory, Compression Ignition (CI) systems employing a diffusion type of combustion allow for a significant raise in compression ratio and, thus, are likely to excel the SI concept in terms of efficiency. The following paper deals with results obtained from investigations on H2 Compression-Ignition (H2-CI) combustion systems by employing both thermodynamic research engines and 3D CFD simulation.
Technical Paper

Advances in Automated Coupling of CFD and Radiation

2008-04-14
2008-01-0389
Research and development engineers have paid much attention to coupling commercial tools for examining complex systems, recently. The purpose of this paper is to demonstrate an automated coupling of a CFD program with a commercial thermal radiation tool. Based on a previous work the coupling behaviour of a parallelized CFD code is being demonstrated. The automation thus speeds up the calculation procedure even for transient simulations not relying on codes of just one vendor. The simulation is then compared with measurements of temperatures of an actual SUV and conclusions are drawn.
X