Refine Your Search

Topic

Author

Search Results

Journal Article

Elaborate Measuring System for Sensitivity Analyses and In-Depth Investigations of a Squealing Brake System

2012-06-13
2012-01-1541
Brake squeal is an elusive problem which has been the subject of investigation for many decades, but there is still a lack of knowledge regarding the excitation mechanisms. New vehicle solutions, for instance the electrical vehicle, will have a lower general noise level. Thus, silent brake systems will gain in importance. To obtain such systems, in-depth investigations of the brake disc/pad contact are required. For these investigations a new sensor has been developed. The guide pins of the caliper are replaced by modified ones which measure the friction force. Additionally, eddy current sensors are installed for contact-free measurement of the pad movement. Furthermore, triaxial acceleration sensors are mounted in the disc vents. Thus, it is possible to evaluate the operational deflection shapes of the disc. Next, an extensive sensibility analysis is performed. Parameters such as environmental conditions, friction coefficient and many others are thereby changed.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle’s design and connections. Consequently, they neglect the role of attack paths from a vehicle’s interfaces to its assets.
Technical Paper

Comparing the NVH Behaviour of an Innovative Steel-Wood Hybrid Battery Housing Design to an All Aluminium Design

2024-06-12
2024-01-2949
The production of Electric Vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. Compared to conventional materials such as aluminium, wooden structures exhibit significantly higher damping properties. In this study, the potential of lightweight wood composites, specifically steel-wood hybrid structures, is investigated as a potential composite material for battery housings for electric vehicles. Experiments have been performed in order to determine the modal parameters, such as natural frequencies and damping ratios.
X