Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

HIGH-SPEED ENGINES OF SMALL PISTON DISPLACEMENT

1921-01-01
210039
In addition to using a smaller quantity of fuel per horsepower-hour, the small high-speed internal-combustion engine has other important features of advantage which are stated. The authors outline specifications intended to secure these advantages. The high-speed racing engine designed by the authors, which won the 500-mile race on the Indianapolis Speedway in 1920, is illustrated and described in detail, its distinctive features being commented upon. The automobile should be built to a higher standard for the use of the high-speed engine. The builder should work to a greater degree of precision and, as the working parts of the engine are all light and stressed fairly highly, this necessitates the use of properly heat-treated high-grade materials. Few small cars of this type seem to give satisfaction. The authors look for further developments to counteract this in the near future.
Technical Paper

BETTERING THE EFFICIENCY OF EXISTING ENGINES

1920-01-01
200005
First reviewing the history of the progressive insufficiency of the supply of highly volatile internal-combustion engine fuels and the early efforts made to overcome this by applying heat to produce rapid vaporization, the author gives an outline of the methods already found valuable in offsetting the rising boiling points of engine fuels and states the resulting three-fold problem now confronting the automotive industry. The tendency to subordinate efficient vaporization to the attainment of maximum volumetric efficiency is criticised at some length and the volatility of fuel is discussed in detail, with reference to characteristic distillation, time of evaporation and distillation-temperature curves which are analyzed. Heating devices are then divided into four classes and described, consideration then being given to fuel losses outside the engine.
Technical Paper

DILUTION OF ENGINE LUBRICANTS BY FUEL

1920-01-01
200008
Engine lubrication troubles resulting from the dilution of the lubricating oil in engine crankcases appear with increasing frequency, particularly where economy demands the use of cheap grades of fuel. Unless a lubricant not miscible with present engine fuels can be produced, lubricants will steadily decrease in viscosity whenever fuel finds its way into them. The most satisfactory remedy is to prevent dilution of the oil. To prevent absorption of the fuel by the oil is a problem of engine design. In experiments made by the Bureau of Standards the absorption of fuel vapors at average engine temperatures was found to be negligible; further experiments and oil tests showed no indication of dilution due to cracking, with representative refiners' products from typical crude oils available in this country.
Technical Paper

ALUMINUM PISTON DESIGN

1920-01-01
200006
The two broad divisions of aluminum pistons from a thermal standpoint are those designed to conduct the heat from the head into the skirt and thence into the cylinder walls, and those designed to partly insulate the skirt from the heat of the piston head. Pistons of the first type seem logical for heavy-duty engines; those of the second type are better suited for passenger-car engines. The objections of wear, piston slap, excessive oil consumption and crankcase dilution are stated as being the same for aluminum as for cast-iron pistons; and these statements are amplified. Piston slap is next considered and, as this can be overcome by using proper clearance, pistons of the second design tend to make this condition easier to meet. Many tests show that when too much oil is thrown into the cylinder bores, tight-fitting pistons and special rings will not completely overcome excessive oil consumption.
Technical Paper

SUPERCHARGERS AND SUPERCHARGING ENGINES

1920-01-01
200007
If at great altitudes air is supplied to the carbureter of an engine at sea-level pressure, the power developed becomes approximately the same as when the engine is running at sea level. The low atmospheric pressure and density at great altitudes offer greatly reduced resistance to high airplane speeds; hence the same power that will drive a plane at a given speed at sea level will drive it much faster at great altitudes and with approximately the same consumption of fuel per horsepower-hour. Supercharging means forcing in a charge of greater volume than that normally drawn into the cylinders by the suction of the pistons. Superchargers usually take the form of a mechanical blower or pump and the various forms of supercharger are mentioned and commented upon. Questions regarding the best location for the carbureter in supercharged engines are then considered.
Technical Paper

THE VELOCITY OF FLAME PROPAGATION IN ENGINE CYLINDERS

1920-01-01
200010
Flame propagation has received much attention, but few results directly applicable to operating conditions have been obtained. The paper describes a method devised for measuring the rate of flame propagation in gaseous mixtures and some experiments made to coordinate the phenomena with the important factors entering into engine operation; it depends upon the fact that bodies at a high temperature ionize the space about them, the bodies being either inert substances or burning gases. Experiments were made which showed that across a spark-gap in an atmosphere of compressed gas, as in an engine cylinder, a potential difference can be maintained which is just below the breakdown potential in the compressed gas before ignition but which is sufficient to arc the gap after ignition has taken place and the flame has supplied ionization. These experiments and the recording of the results photographically are described.
Technical Paper

ADAPTING ENGINES TO THE USE OF AVAILABLE FUELS

1920-01-01
200017
Some of the salient facts regarding the character of the engine fuel marketed within the past few years are shown in accompanying curves. The desirability of operating present-day experimental cars with fuel that is the equivalent of fuel that will probably be generally marketed two years hence is stated and various methods of meeting the fuel problem are then examined. A dry fuel mixture is desired to prevent spark-plug fouling, to improve engine performance in cold weather and to minimize lubricating oil contamination by fuel which passes the pistons. Various methods of obtaining a dry mixture are then discussed, leading to a detailed description of the construction and operation of a device specially designed to accomplish such a result more successfully.
Technical Paper

NEEDS IN ENGINE DESIGN

1920-01-01
200016
The author advocates the use of the fragile aluminum crankcase as a spacer, running crankshaft bearing bolts clear through the crankcase and the cylinder base, so tieing the bearings firmly to the castiron cylinder-block and using the through-bolts also as holding-down studs for the cylinders. The results of experiments on six-cylinder engines with reference to the satisfactory utilization of engine fuel now on the market are then presented. The problem is how to carry the fuel mixture in a proper gaseous state from the carbureter into the cylinder without having the fuel deposited out meanwhile. The power developed at engine speeds of 400 to 2800 r.p.m., with and without hot air applied to the carbureter, is tabulated, the proper location of the intake manifold is discussed, and the necessary features of a satisfactory engine to utilize present-day fuel are summarized.
Technical Paper

COMMENTS UPON FUELS, LUBRICANTS, ENGINE AND PISTON PERFORMANCE

1920-01-01
200019
The comments the author makes regarding fuels, lubricants and engine and piston performance are suggested by pertinent points appearing in papers presented at the 1920 Annual Meeting of the Society. A list of these papers is given. The subjects upon which comments are made include salability of a car, engine balancing, pressure and chemical constitution of gasoline at the instant of ignition, the use of aluminum pistons, the success attending the various departures from orthodox construction, gasoline deposition in the crankcase and cleanness of design, as stated by Mr. Pomeroy; the performance of a finely atomized mixture of liquid gasoline and air and the contamination of lubricating oil by the fuel which passes the pistons, as discussed by Mr. Vincent; the dilution of lubricating oil in engine crankcases and the saving that can be effected by its prevention, as mentioned by Mr. Kramer; and tight-fitting pistons and special rings as presented by Mr. Gunn.
Technical Paper

ENGINE SHAPE AS AFFECTING AIRPLANE OPERATION

1920-01-01
200025
The annual report covering transportation by the largest British air-transport company laid particular emphasis upon the greater value of the faster machines in its service. Granted that efficient loads can be carried, the expense, trouble and danger of the airplane are justified only when a load is carried at far greater speed than by any other means. A reasonable conclusion seems to be that we can judge the progress made in aviation largely by the increased speed attainable. It is interesting and possibly very valuable therefore to inquire into the relations of power and resistance as applied to small racing machines with aircraft engines that are available.
Technical Paper

DESIGN FACTORS FOR AIRPLANE RADIATORS

1920-01-01
200026
The paper defines properties that describe the performance of a radiator; states the effects on these properties of external conditions such as flying speed, atmospheric conditions and position of the radiator on the airplane; enumerates the effects of various features of design of the radiator core; and compares methods that have been proposed for controlling the cooling capacity at altitudes. Empirical equations and constants are given, wherever warranted by the information available.
Technical Paper

PISTON-RINGS

1920-01-01
200075
The free, resilient, self-expanding, one-piece piston-ring is a product of strictly modern times. It belongs to the internal-combustion engine principally, although it is applicable to steam engines, air-compressors and pumps. Its present high state of perfection has been made possible only by the first-class material now available and the use of machine tools of precision. The author outlines the history of the gradual evolution of the modern piston-ring from the former piston-packing, giving illustrations, shows and comments upon the early types of steam pistons and then discusses piston-ring design. Piston-ring friction, the difficulties of producing rings that fit the cylinder perfectly and the shape of rings necessary to obtain approximately uniform radial pressure against the cylinder wall are considered at some length and illustrated by diagrams.
Technical Paper

THE CRITICAL SPEEDS OF TORSIONAL VIBRATION

1920-01-01
200072
Vibrations of several kinds can occur in crankshafts, but the principal ones are transverse and torsional; the paper deals entirely with the latter. A simple case of torsional vibration is considered first and the principles are applied to the torsional vibration of a shaft, the argument being carried forward at some length. A discussion of critical speeds follows and this is supplemented by a lengthy mathematical analysis, inclusive of diagrams. Calculations were made to determine the period of the shafting of United States submarines S4 to S13 and these are described. The three cases investigated include the charging condition when the engine is driving the dynamo, the after clutch being disconnected; the surface condition, when the engine drives the propeller; and the submerged condition, when the motors drive the propeller, the forward clutch being disconnected. Calculations were made also with a Sperry magnetic clutch substituted for the usual flywheel and clutch.
Technical Paper

IGNITION FROM THE ENGINEMAN'S VIEWPOINT

1920-01-01
200071
Ignition is discussed in a broad and non-technical way. The definition of the word ignition should be broad enough to include the complete functioning of the ignition apparatus, beginning from the point where mechanical energy is absorbed to generate current and ending with the completion of the working stroke of the engine. The ignition system includes the mechanical drive to the magneto or generator and the task imposed on the system is by no means completed when a spark has passed over the gap of the spark-plug. Ignition means the complete burning of the charge of gas in the cylinder at top dead-center, at the time the working stroke of the piston commences. The means employed to accomplish this result is the ignition system. In the present-day type of gasoline engine a spark produced by high-voltage electricity is almost universally used for ignition. This high-voltage electricity is produced by a transformer.
Technical Paper

TORSIONAL VIBRATION AND CRITICAL SPEED IN CRANKSHAFTS

1920-01-01
200070
It has long been recognized that, in automotive engines, particularly those of six or more cylinders, excessive vibration is apt to occur despite all precautions taken in balancing; and that this is because the engine impulses coincide at certain speeds with the torsional period of the crankshaft, or rate at which it naturally twists and untwists about some point or points as nodes. Very serious vibration occurred in the main engines for the United States submarines S 4 to S 9, which are required to complete five specified non-stop shop tests and an investigation was made of which the author reports the findings in detail, illustrated with photographs and charts.
Technical Paper

COMBUSTION OF FUELS IN INTERNAL COMBUSTION ENGINES

1920-01-01
200069
The automotive industry was considered a mechanical one until fuel difficulties caused a realization that the internal-combustion engine is only a piece of apparatus for the effective utilization of chemistry. The only great cloud on the horizon of the automotive industry today is the fuel problem, one way to dispel it being to increase the supply and the other to make the automotive device do what it has been designed to do. The author reviews the production of oil and of automotive apparatus, considers the available fuels and states the two distinct parts of the fuel problem as being first carburetion and distribution, external to the engine and one of purely physical relationship, and, second, the combustion of fuel inside the engine cylinder. The subjects of regulating combustion by additions to the fuel, the chemistry of fuels and the burning of heavy fuels are discussed at length.
Technical Paper

BATTERY-IGNITION SYSTEM

1920-01-01
200063
A brief outline of the elementary principles of the operation of jump-spark ignition systems is given preliminarily to the discussion of the advantages of battery-type systems, and four vital elements in a jump-spark ignition system are stated. A diagram is shown and explained of an hydraulic analogy, followed by a discussion of oscillating voltage and oscillograms of what occurs in the primary circuit of an ignition system when the secondary is disconnected. The subjects of spark-plug gaps and current values receive considerable attention and similar treatment is accorded magneto speeds and spark polarity, numerous oscillograms accompanying the text. The effects of magneto and of battery ignition on engine power are stated and commented upon and this is followed by a lengthy comparison of battery and magneto ignition, illustrated with charts.
Technical Paper

CLEVELAND SECTION PAPERS ADVANTAGES OF MAGNETO IGNITION

1920-01-01
200062
A discussion of the advantages of magneto ignition resolves itself into a comparison of magneto and battery-ignition systems, resembling early discussions of the relative merits of the direct and the alternating-current electric systems; both are in existence and fulfilling their respective parts. After stating that ignition is closely related to carburetion and generalizing on the subject of ignition, the author discusses the fundamentals of ignition systems at length, presenting numerous diagrams, and passes to somewhat detailed consideration of comparative spark values, using illustrations. Storage batteries and auxiliary devices receive due attention next and numerous characteristic curves of battery and magneto ignition are shown. Impulse couplings are advantageous in starting large truck and tractor engines, which generally use magnetos; these are described.
Technical Paper

PENNSYLVANIA SECTION PAPER - ENGINEERING POSSIBILITIES AS INDICATED BY THE PROGRESS OF SCIENCE

1920-01-01
200082
The author views in perspective some facts from a purely scientific standpoint, and then shows their application to problems of the automotive industry. After reviewing the present facilities for measurement and the ability to make measurements of distances both infinitely small and large, as an aid toward a proper conception of the ultimate structure of matter, he applies this scientific knowledge in the direction of a solution of the fuel problem, which is a fundamental one because it involves the limitation of a natural resource. From 1918 and 1919 statistics, the amount of gasoline produced was something like 20 to 25 per cent of the crude oil pumped; 8 to 10 per cent is kerosene and 50 per cent is gas and fuel oil and a residue carrying lubricating oil, paraffin and carbon. Kerosene demand and production are practically fixed quantities; gasoline demands are increasing.
Technical Paper

DESIGN OF INTAKE MANIFOLDS FOR HEAVY FUELS

1920-01-01
200043
The adoption of the present system of feeding a number of cylinders in succession through a common intake manifold was based upon the idea that the fuel mixture would consist of air impregnated or carbureted with hydrocarbon vapor, but if the original designers of internal-combustion engines had supposed that the fuel would not be vaporized, existing instead as a more or less fine spray in suspension in the incoming air, it is doubtful that they would have had the courage to construct an engine with this type of fuel intake. That present fuel does not readily change to hydrocarbon vapor in the intake manifold is indicated by tables of vapor density of the different paraffin series of hydrocarbon compounds.
X