Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparison of regenerative braking capacity for an independent-axle all-wheel-drive electric vehicle using different torque distribution strategies

2024-11-05
2024-01-4334
This work examines the regenerative braking capacity using different torque distribution strategies for an independent-axle all-wheel-drive electric vehicle. A single-motor rear-wheel drive Cadillac LYRIQ provided by General Motors and modeled by MathWorks is being modified into an all-wheel drive architecture. The architecture under study has independently driven front and rear axles, driven by a 50 kW (peak power) front motor and a 182 kW (peak power at 350V) rear motor. The goal of the study is to evaluate and compare the regenerative braking capacity for different regenerative braking strategies. This study aims to assist in the development of the energy management algorithm for the Propulsion Supervisory Controller (PSC). Firstly, two variants of optimal regenerative torque distribution strategies are studied. One without power rate penalties and the other with a power rate penalty.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

2024-10-21
The Controller Area Network has become the standard of choice for most automotive manufacturers.  Approved for use as an ISO and EPA diagnostic network, its usage continues to grow.  This course covers the theory and use of the CAN protocol, and its applications in the automotive industry.  Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Participants will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.
Technical Paper

Automotive security solution using Hardware Security Module (HSM)

2024-10-17
2024-28-0037
In today's world, Vehicles are no longer mechanically dominated, with increased complexity, features and autonomous driving capabilities, vehicles are getting connected to internal and external environment e.g., V2I(Vehicle-to-Infrastructure), V2V(Vehicle-to-Vehicle), V2C(Vehicle-to-Cloud) and V2X(Vehicle-to-Everything). This has pushed classical automotive system in background and vehicle components are now increasingly dominated by software’s. Now more focus is made on to increase self-decision-making capabilities of automobile and providing more advance, safe and secure solutions e.g., Autonomous driving, E-mobility, and software driven vehicles, due to which vehicle digitization and lots of sensors inside and outside the vehicle are being used, and automobile are becoming intelligent. i.e., intelligent vehicles with advance safe and secure features but all these advancements come with significant threat of cybersecurity risk.
Technical Paper

Cyber Security Challenges in V2C and in Vehicle Network

2024-10-17
2024-28-0035
Until recently, it was always assumed that only a computer network could be a potential Candidate for cyber-attacks. This perception changed sometime in the year 2007 when the EVITA project by the EU first considered the idea of protecting Automotive ECUs from cyber-attacks. The Automotive cybersecurity topic started gaining momentum when catastrophic repercussions of a cyber-attack using a Jeep Cherokee sometime around 2015. Out of multiple threats in various automotive inter and intra communication interfaces, V2X attacks are at their infancy, but are expected to become much more frequent in the coming years. Telematics, smart mobility, in-vehicle/mobility IoT, and other services require connected vehicles to share data with servers, apps, and various vehicle components. V2X involves V2I, V2V, V2N, V2C, V2P, V2D and V2G etc.
Technical Paper

Contextual Study of Security and Privacy in V2X Communication for Architecture & Networking products

2024-10-17
2024-28-0038
In recent times there has been an upward trend in "Connected Vehicles", which has significantly improved not only the driving experience but also the "ownership of the car". The use of state-of-the-art wireless technologies, such as vehicle-to-everything (V2X) connectivity, is crucial for its dependability and safety. V2X also effectively extends the information flow between the transportation ecosystem pedestrians, public infrastructure (traffic management system) and parking infrastructure, charging and fuel stations, Etc. V2X has a lot of potential to enhance traffic flow, boost traffic safety, and provide drivers and operators with new services. One of the fundamental issues is maintaining trustworthy and quick communication between cars and infrastructure. While establishing stable connectivity, reducing interference, and controlling the fluctuating quality of wireless transmissions, we have to ensure the Security and Privacy of V2I.
X