This course explores the design and performance of battery technologies used in today’s battery-electric vehicles. It focuses on the skills required to define a battery pack design, how battery packs are manufactured, and tests required before entering the market. Participants will leave the course equipped with tools to understand vehicle battery specifications and be able to extract the useful information from the large volume of electric vehicle content published daily. It also defines and analyzes fundamentals of battery operation and performance requirements for HEV, PHEV, EREV and full electric vehicle applications.
As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric motors while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
The 2-day foundational-level Fundamentals of GD&T course teaches the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2009 Standard. The class offers an explanation of geometric tolerances, their symbols, tolerance zones, applicable modifiers, common applications, and limitations. It explains Rules #1 and #2, form and orientation controls, the datum system, tolerance of position (RFS and MMC), runout, and profile controls. Newly acquired learning is reinforced throughout the class with more than 80 practice exercises.
How are batteries used in the mobility industry? This three-week hybrid course introduces how batteries fit into the energy context and provides the fundamental knowledge and state-of-the-art insights into battery technologies. It will cover the key role of batteries as a tool for energy storage, the main components and parameters that characterize a battery, and the electrochemical phenomena that lie behind battery operation.