Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

FACTORS IN UNIVERSAL JOINT DESIGN

1916-01-01
160036
The author considers the effects of velocity variation on the operation of a car and states that this variation is absorbed mainly by the flywheel. A formula is given for calculating the pressure on universal bearings. Various methods of protecting and lubricating joints are described. A number of European types of joints are illustrated. A much larger number of types of joints are used abroad in-asmuch as each maker usually makes his own design instead of purchasing it from a specialist as is the usual practice in this country. In conclusion the paper describes types of joints using flexible material, such as leather or spring steel.
Technical Paper

PROBLEMS IN HIGH-SPEED ENGINE DESIGN

1916-01-01
160023
The author outlines in a general way the relation of car performance to modern engine development. He considers particularly weight reduction and torque performance of high-speed engines, giving the undesirable characteristics attending the increased torque range gained by higher speed. He next discusses the relation of torque to total car weight, to acceleration and to hill-climbing ability and suggests a method of determining the value of a car in terms of its performance ability. The author holds incorrect those systems in which the amount of lubrication is in proportion to speed only; and in which oil for crankshaft and crankpin bearings must cool as well as lubricate them. He shows a system designed to solve these oiling problems. Static, running and distortion balance of a rotating mass are defined by the author, who shows how they apply to a large number of types of crankshafts.
Technical Paper

RECENT AEROPLANE-ENGINE DEVELOPMENTS

1916-01-01
160025
The author gives a brief review of developments during the past year in the construction of aeroplanes, particularly as affected by the European War. He takes as an example the Renault twelve-cylinder engine, citing the respects in which the present differs from previous models. Such factors as the changes in cooling systems, method of drive, valve construction and starting devices are considered. The requirements of aeroplane engines, such as constant service, high speeds (of aeroplanes) and stream-line form of engines and radiators, are outlined. Propeller requirements are dealt with at length, curves being given by which the efficiency and diameter of the propeller can be obtained. In conclusion a number of different engine installations are illustrated and compared.
Technical Paper

Performance and Exhaust Emission in Spark Ignition Engine Fueled with Methanol-Butane Mixture

1800-01-01
871165
To improve the cold startability of methanol, methanol-butane mixed fuel was experimented. Engine performance and exhaust emissions are obtained with methanol-butane mixed fuel. These characteristics are compared with those of methanol and gasoline. The mixing ratios of methanol and butane are 50:50 (M50), 80:20 (M80), and 90:10 (M90) based on the calorific value. As a result, M90 produces more power than gasoline and more or less than methanol depending on the engine speed and the excess air ratio. Brake horse power of M90 is higher than that of gasoline by 5 - 10 %, and brake specific fuel consumption is smaller than that of gasoline by 17 % to the maximum based on the calorific value. NOx emission concentrations for M90 are lower than those for gasoline and higher than those for methanol because of the effect of butane, CO emission concentrations are somewhat lower than those for methanol and gasoline.
Technical Paper

Engine Control System for Lean Combustion

1800-01-01
871171
In order to achieve lean burn engine control system, it is necessary to develop high accuracy air fuel ratio control technology including transient driving condition and lean burn limit expansion technology. This paper describes the following. 1 The characteristics of the transient response of the fuel supply are clarified when various kinds of air flow measuring methods and fuel injection methods are used. 2 To achieve stable combustion in lean mixture, fine fuel droplet mixture, whose diameter is less than 40 μm, needs to be supplied.
Technical Paper

Investigation of High-Compression Lean Burn Engine

1800-01-01
871215
The sequential fuel injection, in which fuel is injected into swirl being generated for mixture stratification, was used to pursue the potential of a lean burn engine for its performance improvement. As a result, it has been found that the most effective method to increase thermal efficiency while reducing NOx emission level is to combine a high-compression compact combustion chamber located on exhaust valve side in cylinder head with DICS (Dual induction Control System). This method was used to build a high-compression lean burn concept vehicle, which was evaluated for compliance to various emission standards. Testing showed that the concept vehicle can improve fuel economy by 10.5% on the Japanese 10-mode cycle, by 8.3% on the ECE mode cycle, and by 6.3% on the U.S. EPA test mode cycle while meeting respective emission standards.
X