Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The effect Mechanism of Grain Size with Nanoscale and Microscale on Physical and Chemical Properties of Cu/SSZ-13 SCR catalyst

2024-11-05
2024-01-4305
Selective catalytic reduction (SCR) technology is currently one of the most effective methods to reduce NOx emissions for engine. In order to cope with the energy crisis and environmental pollution problems, hydrogen engines have been widely studied in recent years. However, high NOx emissions under some working conditions still need to be further solved. NH3-SCR technology is considered to be the most promising hydrogen engine after-treatment device. This paper used Cu-SSZ-13, which is widely commercially available, as the research object, and explored the relationship between micron and nanoscale grain sizes through experimental methods such as BET, XRD, NH3-TPD, UV-vis-DRS and activity testing, the influence mechanism of micron-scale and nano-scale grain size on the morphology and properties of Cu-SSZ-13 catalyst was explored.
Technical Paper

Emissions analysis for a hydrogen-fueled low-pressure-ratio split-cycle engine

2024-11-05
2024-01-4312
Recuperated low-pressure-ratio split-cycle engines represent a promising engine configuration for applications like transportation and stand-alone power generation by offering a potential efficiency as high as 60%. However, it can be challenging to achieve the stringent NOx emission standard, such as Euro 6 limit of 0.4 gNOx/kWh, due to the exhaust cylinder high intake temperature. This paper presents experimental investigation of hydrogen-air combustion NOx emissions for such engines for the first time. Experiments are carried out using a simplified constant-volume combustion chamber with glow-plug ignition. Two fuel injection techniques are performed: direct injection and injection via a novel convergent-divergent injector. For the direct injection scenario, NOx levels are unsatisfactory with respect to the Euro 6 standards over a range of operating temperatures from 200 °C to 550 °C.
Technical Paper

Performance and Emissions of a Hydrogen Dual-Fuel Engine using Diesel and HVO as Pilot Fuels

2024-11-05
2024-01-4286
A comprehensive experimental study of hydrogen–diesel dual-fuel and hydrogen-hydrotreated vegetable oil (HVO) dual-fuel operations was conducted in a single-cylinder diesel engine (bore 85.0 mm, stroke 96.9 mm, and compression ratio 14.3) equipped with a common rail fuel injection system and a supercharger. The hydrogen flow rate was manipulated by varying the hydrogen excess air ratio from 2.5 to 4.0 in 0.5 increments. Hydrogen was introduced into the intake pipe using a gas injector. Diesel fuel and HVO were injected as pilot fuels at a fixed injection pressure of 80 MPa. The quantity of pilot fuel was set to 3, 6, and 13 mm3/cycle. The intake and exhaust pressures were set in the range of 100–220 kPa in 20 kPa increments. The engine was operated at a constant speed of 1,800 rpm under all conditions. The pilot injection timing was varied such that the ignition timing was constant at the TDC under all conditions.
Technical Paper

Methanol Combustion in Compression Ignition Engines with a Combustion Enhancer based on Nitrates (CEN): Insights from an experimental study in a New One Shot Engine (NOSE)

2024-11-05
2024-01-4281
Because it can be produced in a green form, methanol is envisioned as a potential fuel to replace conventional diesel fuel and directly reduce the greenhouse gas (GHG) impact of maritime transportation. For these reasons, Original Equipment Manufacturers (OEMs) working on marine applications are focusing on making methanol easily usable in Compression Ignition (CI) engines. While it is an easy-to-use substance with manageable energy content, methanol has a few drawbacks, including a high latent heat of vaporization and a high auto-ignition temperature, all of which affect combustion quality. Therefore, solutions have been found or are still under study to give it Diesel-like behavior. One solution is to use a pilot fuel for ignition in significant quantities. A previous study conducted at the PRISME laboratory highlighted the possibility of using a Combustion Enhancer based on Nitrates (CEN) as an additive.
Technical Paper

Spray Ignition of Primary Reference Fuels Blended with Ethanol and 2,5-Dimethylfuran

2024-11-05
2024-01-4294
The Advanced Fuel Ignition Delay Analyzer (AFIDA) apparatus can measure the ignition delay times with high repeatability within very short time. The device also requires small quantities of fuel samples. During AFIDA experiments, liquid fuel is injected into a hot and constant-volume chamber at high pressure. This way the ignition of the spray combines the effects of realistic influences like liquid evaporation and combustion chemistry. The present work investigates the effects of blending ethanol and 2,5-dimethylfuran with primary reference fuels (i.e., mixtures of iso-octane and n-heptane). The primary motivation of this study is to show the differences in ignition delay times of different gasoline-ethanol and gasoline-2,5-dimethylfuran blends where both physical mixing and chemical kinetics have considerable influences. The primary reference fuel is considered as the gasoline surrogate in this work. The study has been conducted at a range of temperatures and pressures.
Technical Paper

Physics Based On-Board Exhaust-Temperature Prediction Model for Highly Efficient and Low-Emission Powertrain

2024-11-05
2024-01-4273
Modern automotive powertrains are operated using many control devices under a wide range of environmental conditions. The exhaust temperature must be controlled within a specific range to ensure low exhaust-gas emissions and engine-component protection. In this regard, physics-based exhaust-temperature prediction models are advantageous compared with the conventional exhaust-temperature map-based model developed using engine dyno testing results. This is because physics-based models can predict exhaust-temperature behavior in conditions not measured for calibration. However, increasing the computational load to illustrate all physical phenomena in the engine air path, including combustion in the cylinder, may not fully leverage the advantages of physical models for the performance of electric control units (ECUs).
Technical Paper

Evaluating the ratcheting performance of park lock mechanism for electric drive unit using Multi body dynamic approach

2024-11-05
2024-01-4315
Electric Drive Unit (EDU) is essential system in electric vehicles and one of the important features in EDU is the Park Lock mechanism. It ensures safety of vehicle in parked condition and prevents vehicle from rolling on grades by locking the transmission. When vehicle is on a grade and park lock is activated, a pawl and ratchet system gradually slows down the vehicle to the critical speed of engagement with a series of acute ratcheting events between rachet gear and pawl teeth before fully locking the axle output shaft. This phenomenon is crucial because high speed engagement damages the mechanism due to sudden loads while low speed engagement causes risk of vehicle roll. Ratcheting phenomenon of park lock mechanism is highly nonlinear, dynamic and depends on different factors like rachet and pawl profiles in contact, friction properties, spring loads, actuation mechanism etc.
Technical Paper

Numerical Investigation of the Combustion Process and Emissions Formation in a Heavy-duty Diesel Engine Featured with Multi-pulse Fuel Injection

2024-11-05
2024-01-4285
Combustion in conventional and advanced diesel engines is an intricate process that encompasses interaction among fuel injection, fuel-air mixing, combustion, heat transfer, and engine geometry. Manipulation of fuel injection strategies has been recognized as a promising approach for optimizing diesel engine combustion. Although numerous studies have investigated this topic, the underlying physics behind flame interactions from multiple fuel injections, spray-flame-wall interaction and their effects on reaction zones, and NOx/soot emissions are still not well understood. To this end, a computational fluid dynamics (CFD) study is performed to investigate the effects of pilot and post injections on in-cylinder combustion process and emissions (NOx and soot) formation in a heavy-duty (HD) diesel engine.
Technical Paper

Efficiency Improvement in a 48-Volt Mild Hybrid Vehicle Using Rankine Cycle Waste Heat Recovery

2024-11-05
2024-01-4317
The automotive industry faces significant obstacles in its efforts to improve fuel economy and reduce carbon dioxide emissions. Current conventional automotive powertrain systems are approaching their technical limits and will not be able to meet future carbon dioxide emission targets as defined by the tank-to-wheel benchmark test. As automakers transition to low-carbon transportation solutions through electrification, there are significant challenges in managing energy and improving overall vehicle efficiency, particularly in real-world driving scenarios. While electrification offers a promising path to low-carbon transportation, it also presents significant challenges in terms of energy management and vehicle efficiency, particularly in real-world scenarios. Battery electric vehicles have a favorable tank-to-wheel balance but are constrained by limited range due to the low battery energy density inherent in their technology.
Technical Paper

Numerical Evaluation of Fuel-Air Mixing in a Direct-Injection Hydrogen Engine using a Multi-Hole Injector

2024-11-05
2024-01-4295
Hydrogen as a chemical energy carrier is considered as one of the most promising options to achieve effective decarbonization of the transportation sector, due to its carbon-free chemical composition. This is particularly true for applications that rely on internal combustion engines (ICEs), although much research is still needed to achieve stable, reliable, and safe operations of the engine. To this purpose, direct injection (DI) of gaseous hydrogen during the compression stroke offers great potential to avoid backfire and largely reduce preignition issues, as opposed to port-fuel injection. Recently, much research has been dedicated, both experimentally and numerically, to understanding the physics and chemistry connected with hydrogen’s mixing and combustion processes in ICEs. This work presents a computational fluid dynamics (CFD) study of the hydrogen DI process in an optical engine operating at relatively low tumble conditions.
Technical Paper

Phase Detection Relevance in Engine Torque Determined by Instantaneous Engine Speed

2024-11-05
2024-01-4270
Accurate flywheel torque estimation in combustion engines can be used for monitoring engine performance, creating the potential for lowering emissions and fuel costs. Recently a method was proposed to determine the mean flywheel torque from instantaneous engine speed using the n-th order Fourier series, where n is the number of cylinders firing per crank revolution. However, instantaneous engine speed is affected by two separate torque contributions. The torque resulting from reciprocating masses in the engine, i.e., reciprocating torque, and the torque produced by combustion pressure, i.e., gas torque. Gas torque and reciprocating torque signals have the same frequency but are in opposite phases. Since the resultant torque at the flywheel is the sum of gas and reciprocating torques, there is a need to remove reciprocating torque from the total torque at the flywheel. This requires knowing whether gas or reciprocating torque has a larger amplitude.
Technical Paper

Fuel Design Concept to Improve Both Combustion Stability and Antiknocking Property Focusing on Ethane

2024-11-05
2024-01-4276
To realize a super-leanburn SI engine with a very-high compression ratio, it is required to design a new fuel which could have low ignitability at a low temperature for antiknocking, but high ignitability at a high temperature for stable combustion. Ethane shows a long ignition delay time at a low temperature close to that of methane, but a short ignition delay time at a high temperature close to that of gasoline. In the present study, the antiknocking effect of adding methane with the RON of 120, ethane with the RON of 108, or propane with the RON of 112 to a regular gasoline surrogate fuel with the RON of 90.8 has been investigated. Adding each gaseous fuel by less than 0.4 in heat fraction advances knocking limit in the descending order of SI timing advance of ethane, methane, and propane, and in the descending order of CA 50 advance of ethane, propane, and methane. Adding methane extends combustion duration slightly, but adding ethane or propane shortens it considerably.
Technical Paper

Parametric Sensitivity Study of Methanol Combustion Engine Assisted by a Glow Plug

2024-11-05
2024-01-4284
This work numerically investigated the methanol compression ignition combustion assisted with a glow plug (GP). The GP was positioned in the middle of the two intake ports. A heating power of 50 W was applied to maintain a quasi-steady temperature of 1323 K for the heating medium. Sensitivity analyses were conducted on various parameters affecting engine combustion characteristics and performance, including radial distance (RD) between the glow plug and injector, relative angle (RA) between the GP and its nearest jet, intake temperature, split ratio of pilot injection, and intake and injection pressures. Due to the complex fuel jet-GP interaction, the optimum RA shifted from 10° at RD = 22.5 mm to 17.5° at RD = 12.5 mm. The optimal RD among the studied values (12.5, 17.5, and 22.5 mm) was found to be 12.5 mm, achieving an indicated thermal efficiency (ITE) of 42.1% at RA = 17.5°.
Technical Paper

Effects of Fuel Distillation Characteristics on the Performance of Catalyst-Heating Operation in a Medium-Duty Off-Road Diesel Engine

2024-11-05
2024-01-4278
Catalyst heating operation in compression-ignition engines is critical to ensure rapid light-off of exhaust catalysts during cold-start. This is typically achieved by using late post injections for increased exhaust enthalpy, which retardability is constrained by acceptable CO and unburned hydrocarbons emissions, since they are directly emitted through the tailpipe due to the inactivity of the oxidation catalyst at these conditions. Post-injection retardability has shown to be affected by the cetane number of the fuel [SAE 2022-01-0483], but it is unclear how other fuel properties may affect the ability to retard the combustion. This study aims to understand the impact of the distillation characteristics of the fuel on the performance of catalyst heating operation and on post-injection retardability.
Technical Paper

Investigation of the effects of Injection strategy on the combustion performance and emissions of Light Duty GCI engine

2024-11-05
2024-01-4279
High-efficiency lean-burn compression ignition using high-reactivity fuels, known as Gasoline Compression Ignition (GCI), demonstrates potential in reducing particulate matter (PM) and nitrogen oxide (NOx) emissions by controlling the charge ignition through both local strength and auto-ignition chemistry. This study explores the combustion strategy for GCI fuel with a Research Octane Number (RON) of 61 under a wide range of operating conditions using a Single Cylinder Research Engine (SCRE) calibrated to Euro 5 emission standards. The SCRE, with a compression ratio (CR) of 16.50, is designed for high-reactivity fuels and features a centrally located multi-hole injector and a piston bowl shape tailored to injection and spray characteristics. At steady state and part load (IMEP = 7 bar), the study investigates the impact of fuel injection strategy and the required amount of exhaust gas recirculation (EGR).
Technical Paper

The effects of enhanced flame diffusion surface on thermal efficiency of small-bore HPD diesel

2024-11-05
2024-01-4280
In the context of energy conservation and emission reduction, high power density(HPD) and low fuel consumption are the consistent pursuit of diesel engine development. Among the small-bore diesel, the limited space in the cylinder poses higher challenges and requirements for the arrangement of sprays.The high injection pressure results in a greater impulse when the spray impinges chamber, which allows the combustibles to develop along the chamber wall. Based on these characteristics of small-bore HPD diesel, a reasonable injection scheme is proposed to help flame diffusion surface increasing and thermal efficiency enhancing. This work proposes an optimization path to increase the flame diffusion surface, then improve thermal efficiency. It can be achieved with matching between the injector extension length and the spray spray angle.
Technical Paper

Experimental Investigation on Combustion Strategy of Light Duty GCI Fuelled With High Reactivity Gasoline Fuel

2024-11-05
2024-01-4282
Diesel engines are largely used as power units with high fuel efficiency. Conversely, they have an adverse impact on the environment and human health as they emit high NOx and particulate Matter (PM) emissions. As more stringent regulations for emissions are introduced, low temperature combustion (LTC) strategy such as Gasoline Compression Ignition (GCI) demonstrated the potential to reduce the PM, NOx emissions by operating engines under a Partially Premixed Combustion (PPC) mode. Therefore, A 0.550 mm single cylinder engine SCE, which is operated at Gasoline Direct Injection Ignition (GDCI), was tested over range of engine loads with constant speed (1500 rpm) using RON80 without oxygenate. Different operating parameters such as injection were used to control combustion phasing and mixture stratifications. At low loads, rebreathing (RB) of hot exhaust gas produced low levels of NOx and smoke emissions.
Technical Paper

Effect of Fuel Chemical Structure on Soot Formation in Sustainable Aviation Fuels

2024-11-05
2024-01-4310
Sustainable Aviation Fuels (SAFs) offer great promises towards decarbonizing the aviation sector. Due to the high safety standards and global scale of the aviation industry, SAFs pose challenges to aircraft engines and combustion processes, which must be thoroughly understood. Soot emissions from aircrafts play a crucial role, acting as ice nuclei and contributing to the formation of contrail cirrus clouds, which, in turn, may account for a substantial portion of the net radiative climate forcing. This study focuses on utilizing detailed kinetic simulations and soot modeling to investigate soot particle generation in aero-engines operating on SAFs. Differences in soot yield were investigated for different fuel components, including n-alkanes, iso-alkanes, cycloalkanes, and aromatics. A 0-D simulation framework was developed and utilized in conjunction with advanced soot models to predict and assess soot processes under conditions relevant to aero-engine combustion.
Technical Paper

Emission characteristics of different TCR Diesel fuels in comparison to diesel fuel derived from other sources

2024-11-05
2024-01-4289
As part of the European Green Deal, the EU has set itself the binding target of achieving climate neutrality by 2050 with the European Climate Act. At the same time, the EU is currently being confronted with an unprecedented energy crisis coupled with an increasing economic pressure, caused by military conflicts and geopolitical tensions resulting in increased fossil fuel prices. However due to high energy density liquid hydro-carbons are still critical needed fuels for transportation. On the other hand Biomass wastes, like sewage sludge and paper sludge, are currently a significant challenge to environmental protection. As a result due to nitrate pollution in soil, e.g. sewage sludge is no longer permissible to distribute on agricultural fields in a growing number of areas such as parts of Italy and Germany. Therefore there is currently a growing move towards the use of sewage sludge or paper sludge in thermal conversion processes.
Technical Paper

Prediction of WLTC Mode Drive Fuel Consumption of Vehicles Using Blended Gasoline

2024-11-05
2024-01-4291
For the survival of internal combustion engines, the required research right now is for alternative fuels, including drop-ins. Certain types of alternative fuels have been estimated to confirm the superiority in thermal efficiency. In this study, using a single-cylinder engine, olefin and oxygenated fuels were evaluated as a drop-in fuel considering the fuel characteristic parameters. Furthermore, the effect of various additive fuels on combustion speed was expressed using universal characteristics parameters. In addition, the prediction of CO2 emission from passenger cars were carried out by changing the fuels. The CO2 emission in running WLTC was estimated using Modelica. As a result, it was found that the CO2 emission can be reduced by adding olefin and oxygenated fuels.
X