Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

ELECTRIC TRANSMISSION ON OWEN CARS

1916-01-01
160041
This paper contains a brief description of the Entz electric transmission. Wiring connections are given of the several speeds, for electric braking, for starting the engine and for charging the battery. The statement is made that the electric transmission eliminates and does the work of the friction clutch, the clutch pedal, the transmission gears, the flywheel and separate starting and lighting systems.
Technical Paper

FOUR-CYLINDER ENGINES OF TO-DAY*

1916-01-01
160043
The paper gives the value of certain factors in engine design that are good practice and uses these values to calculate the horsepower of a four-cylinder engine. The author holds that the deciding factor in comparing four-cylinder engines with those of the same displacement but with a greater number of cylinders, is the thermal efficiency. Both the cooling medium and the mechanical losses increase in proportion to the number of cylinders. He suggests in closing, that the demand for power output beyond the possibilities of four cylinders must be met by the use of a greater number.
Technical Paper

FIELD OF FOUR-CYLINDER ENGINES*

1916-01-01
160042
The author confines his discussion to engines used on pleasure cars, inasmuch as practically all commercial vehicles use the four-cylinder type. The performance expected of their cars by automobile owners is outlined, particularly as regards performance, durability and maintenance cost. In-asmuch as the horsepower required is often determined by the acceleration demanded, the argument in favor of four-cylinder engines is based mainly on a comparison of its acceleration performance with those of engines having a larger number of cylinders. A number of acceleration curves are given for these engines. The paper next considers smoothness of operation at low, medium and high running speeds, asserting that the decrease in inertia forces due to lighter reciprocating parts has made it possible to increase the speed and thus reduce remarkably the vibration of the four-cylinder engine.
Technical Paper

FACTORS IN UNIVERSAL JOINT DESIGN

1916-01-01
160036
The author considers the effects of velocity variation on the operation of a car and states that this variation is absorbed mainly by the flywheel. A formula is given for calculating the pressure on universal bearings. Various methods of protecting and lubricating joints are described. A number of European types of joints are illustrated. A much larger number of types of joints are used abroad in-asmuch as each maker usually makes his own design instead of purchasing it from a specialist as is the usual practice in this country. In conclusion the paper describes types of joints using flexible material, such as leather or spring steel.
Technical Paper

PROBLEMS IN HIGH-SPEED ENGINE DESIGN

1916-01-01
160023
The author outlines in a general way the relation of car performance to modern engine development. He considers particularly weight reduction and torque performance of high-speed engines, giving the undesirable characteristics attending the increased torque range gained by higher speed. He next discusses the relation of torque to total car weight, to acceleration and to hill-climbing ability and suggests a method of determining the value of a car in terms of its performance ability. The author holds incorrect those systems in which the amount of lubrication is in proportion to speed only; and in which oil for crankshaft and crankpin bearings must cool as well as lubricate them. He shows a system designed to solve these oiling problems. Static, running and distortion balance of a rotating mass are defined by the author, who shows how they apply to a large number of types of crankshafts.
Technical Paper

Investigation of High-Compression Lean Burn Engine

1800-01-01
871215
The sequential fuel injection, in which fuel is injected into swirl being generated for mixture stratification, was used to pursue the potential of a lean burn engine for its performance improvement. As a result, it has been found that the most effective method to increase thermal efficiency while reducing NOx emission level is to combine a high-compression compact combustion chamber located on exhaust valve side in cylinder head with DICS (Dual induction Control System). This method was used to build a high-compression lean burn concept vehicle, which was evaluated for compliance to various emission standards. Testing showed that the concept vehicle can improve fuel economy by 10.5% on the Japanese 10-mode cycle, by 8.3% on the ECE mode cycle, and by 6.3% on the U.S. EPA test mode cycle while meeting respective emission standards.
X