Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Piston and Guide-Pin Rattle Noise Mitigation in Electro-Mechanical Brake Caliper

2024-09-08
2024-01-3032
The hydraulic brake caliper utilizes pressurized brake fluid to actuate one or multiple pistons generating friction between the brake pads and disc. Calipers are classified into floating and fixed type caliper. Floating caliper slides inboard/outboard direction to apply and release pressure on the outer pad. This type of caliper has rubber or spring components to maintain specific clearance for sliding characteristics. Therefore, caliper rattle noise could occur due to wheel vibrations when the vehicle is driven on unpaved roads or rough surfaces. Rattle noise is particularly pronounced in front calipers positioned closer to the driver and its susceptibility tends to increase with the weight of the caliper. The Electro-Mechanical Brake (EMB) caliper has gained substantial attention in automotive industry for its advantages features including reduced brake drag, optimized vehicle layout and precise brake control.
Technical Paper

Glow-discharge Optical Emission Spectroscopy Study of Cr(III) Sealing in Anodized Aluminium-Silicon Alloys for Brake Component

2024-09-08
2024-01-3038
Calipers and pistons for high-end car braking systems are typically realized using anodized Aluminium-Silicon alloys. Indeed, Aluminium-Silicon alloys are light materials with optimal mechanical properties and, when anodized, excellent corrosion and wear resistances. To achieve these top-notch surface properties, the anodizing process is followed by a sealing post-treatment, which significantly improves the corrosion resistance and tunes the tribological properties (e.g., hardness and friction coefficient) of the anodized pieces. Sealing consists in the precipitation of insoluble hydroxides and functional compounds (e.g., corrosion inhibitors) inside the nano-pores of the anodic layer. Nevertheless, sealing might not penetrate through all the nano-porous structure of the anodic layer. Thus, in light of possible post-machining of sealed, anodized components, it appears fundamental to develop a tool to determine the depth penetration of sealing inside the anodic layer.
X