To realize a super-leanburn SI engine with a very-high compression ratio, it is required to design a new fuel which could have low ignitability at a low temperature for antiknocking, but high ignitability at a high temperature for stable combustion. Ethane shows a long ignition delay time at a low temperature close to that of methane, but a short ignition delay time at a high temperature close to that of gasoline. In the present study, the antiknocking effect of adding methane with the RON of 120, ethane with the RON of 108, or propane with the RON of 112 to a regular gasoline surrogate fuel with the RON of 90.8 has been investigated. Adding each gaseous fuel by less than 0.4 in heat fraction advances knocking limit in the descending order of SI timing advance of ethane, methane, and propane, and in the descending order of CA 50 advance of ethane, propane, and methane. Adding methane extends combustion duration slightly, but adding ethane or propane shortens it considerably.
In the context of energy conservation and emission reduction, high power density(HPD) and low fuel consumption are the consistent pursuit of diesel engine development. Among the small-bore diesel, the limited space in the cylinder poses higher challenges and requirements for the arrangement of sprays.The high injection pressure results in a greater impulse when the spray impinges chamber, which allows the combustibles to develop along the chamber wall. Based on these characteristics of small-bore HPD diesel, a reasonable injection scheme is proposed to help flame diffusion surface increasing and thermal efficiency enhancing. This work proposes an optimization path to increase the flame diffusion surface, then improve thermal efficiency. It can be achieved with matching between the injector extension length and the spray spray angle.
The combustion of hydrogen (H2) as a fuel is attractive due to its clean combustion or combustion-enhancing properties when used as a supplement to other fuels. However, the challenge of using H2 as a fuel for transportation applications is the difficulty of onboard storage. Cracking onboard stored ammonia (NH3) into H2 can also improve combustion performance and emissions in mobile applications fuelled with zero and carbon-neutral fuels. However, the reforming process is not always 100 % efficient which can lead to the presence of NH3 in the combustion process. The presence of NH3 can influence engine performance, combustion and emissions. Therefore, this experimental study reports the effect of H2 and H2/NH3/N2 fuel blends added to gasoline in a dual-fuel operation under both stoichiometric (λ=1.0) and lean-burn (λ>1.0) operating conditions in a spark ignition (SI) engine.
The Advanced Fuel Ignition Delay Analyzer (AFIDA) apparatus can measure the ignition delay times with high repeatability within very short time. The device also requires small quantities of fuel samples. During AFIDA experiments, liquid fuel is injected into a hot and constant-volume chamber at high pressure. This way the ignition of the spray combines the effects of realistic influences like liquid evaporation and combustion chemistry. The present work investigates the effects of blending ethanol and 2,5-dimethylfuran with primary reference fuels (i.e., mixtures of iso-octane and n-heptane). The primary motivation of this study is to show the differences in ignition delay times of different gasoline-ethanol and gasoline-2,5-dimethylfuran blends where both physical mixing and chemical kinetics have considerable influences. The primary reference fuel is considered as the gasoline surrogate in this work. The study has been conducted at a range of temperatures and pressures.
This SAE Recommended Practice promotes uniformity in the evaluation and qualification tests conducted on gasoline direct injection (GDI) fuel injectors used in gasoline engine applications, where fuel pressures are typically well above 10 MPa. The document scope is limited to electrically actuated gasoline fuel injection devices used in automotive GDI systems and is primarily restricted to bench tests.
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine (ICE) as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigation, due to their reduced emission levels and high thermodynamic efficiency. Lean charge is suitable for passenger car applications, where the demand of mid/low power output does not require an excessive amount of air to be delivered by the turbocharging unit, but can difficulty be tailored in the field of high-performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of feeding conditions near the stochiometric is explored in the field of high-performance engines (20 BMEP), leading to the consequent issue of abatement of pollutant emissions.
The global push to minimize carbon emissions and the imposition of more rigorous regulations on emissions are driving an increased exploration of cleaner powertrains for transportation. Hydrogen fuel applications in internal combustion engines are gaining prominence due to their zero carbon emissions and favorable combustion characteristics, particularly in terms of thermal efficiency. However, conventional Spark-Ignition (SI) engines are facing challenges in meeting performance expectations while complying with strict pollutant-emission regulations. These challenges arise from the engine's difficulty in handling advanced combustion strategies, such as lean mixtures, attributed to factors like low ignition energy and abnormal combustion events. To address these issues, the Barrier Discharge Igniter (BDI) stands out for its capability to generate non-equilibrium Low-Temperature Plasma (LTP), a strong promoter of ignition through kinetic, thermal, and transport effects.
In a context of growing concern for vehicle-related CO2 and pollutant emissions, non-conventional fuels like methanol (CH3OH) represent a valid alternative to fossil fuels to decarbonize the transport sector in a reasonable time. This is mainly due to its lower carbon content than conventional gasoline and diesel. Moreover, methanol can be obtained either from biomass or CO2 capture from the atmosphere, which makes the latter a renewable fuel. Given the possibility of being stored in liquid phase at standard temperature and pressure (STP), methanol is very suitable for Light Duty Vehicles (LDVs), in which the need to contain fuel tank dimensions is relevant. Regarding the deployment of methanol as a fuel, it is not very challenging, as it can be adopted in current production Internal Combustion Engines (ICEs) either in pure form or in blend with other fuels without any significant modifications.
The research for sustainable alternative fuels for combustion engines was driven by the urgency to meet future emission regulation norms and mitigate climate change and dependency on fossil fuels. In this context, methanol emerges as a promising candidate due to its potential for greenhouse gas-neutral production methods and its advantageous characteristics for employment in SI engines. Adverse effects, such as elevated emissions due to incomplete combustion along with liner impingement and oil dilution as a consequence of the high injected fuel mass and the large enthalpy of vaporization, can be improved by a dual injection concept. The tests were conducted on a single-cylinder research engine derived from a common passenger vehicle engine. The exhaust gas composition was measured with an FTIR-analyzer employing a methanol-specific evaluation method, standard exhaust gas analyzers, and a solid particle counter system with 10 and 23 μm cut-off sizes.
Hydrogen-powered mobility is believed to be crucial in the future, as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context, the hydrogen-fueled internal combustion engine represents one of the suitable technical solution for the future sustainable mobility. In a short-term perspective, the development of the green hydrogen production capability and distribution infrastructure do not allow a substantial penetration of pure hydrogen IC engines. For this reason, natural gas – hydrogen blends can represent a first significant step towards decarbonization, also determining a trigger effect on the hydrogen market development. The present paper is focused on the analysis of the combustion and performance characteristics of a production PFI natural gas engine, run on blends with 15% in volume of hydrogen (HCNG).