Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FAA Part 21 Certification Procedures for Products and Parts

2024-12-09
The aerospace industry is hinged around compliance with Part 21; however, comprehension of Part 21 and its role in civil certification is challenging. This course is designed to provide participants with an understanding of the processes that encompass aircraft certification, including compliance with FARs, certification procedures and post certification responsibilities. It is also intended to introduce participants to the many regulatory issues upon which companies make business decisions that can be derailed by failing to see the part 21 implications.
Training / Education

Fundamentals of Vehicle Suspension Design

2024-12-03
The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Training / Education

AS9100 and IA9100 Understanding the Requirements

2024-11-18
Individuals responsible for quality management system (QMS) implementation, preparation, realization, and auditing to the AS9100:2016 standard series for Aviation, Space, and Defense (ASD) require an understanding of International Aerospace Quality Group (IAQG) ASD standards requirements. When ASD standards are implemented and correctly maintained, utilizing the process approach, managing risks, and proactively identifying opportunities its use results in improved performance. An understanding of Certification Body requirements will have a direct impact on the outcome of the QMS audit as companies utilize AS9100 Rev. D.
Training / Education

Introduction to Car Hacking with CANbus

2024-11-13
Vehicle cybersecurity vulnerabilities could impact a vehicle's safe operation. Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-11-11
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Technical Paper

A Comparative Analysis of Multidisciplinary Aspects in Exotic Axial Flux Machine Powertrain Architectures Emphasizing Vehicle Dynamics, Efficiency, and Packaging

2024-11-05
2024-01-4316
This paper presents an analysis for evaluating electric machine and reducer specifications in conjunction with a comprehensive assessment of vehicle dynamics and drivability for an axial flux machine. The refence point for this study is a conventional central drive unit comprising a single electric machine, reducer, and differential. Powertrain architectures configured with two axial flux machines integrated as in-wheel drives as well as one axial flux machine mounted perpendicular to the chassis, are examined in comparison to the reference design. The study begins by establishing wheel-level traction force requirements and minimum power demands for a mid-sized vehicle. Subsequently, requisite machine and reducer specifications are derived based on these findings. Additional considerations encompass packaging constraints and efficiency thresholds.
Technical Paper

Comparison of regenerative braking capacity for an independent-axle all-wheel-drive electric vehicle using different torque distribution strategies

2024-11-05
2024-01-4334
This work examines the regenerative braking capacity using different torque distribution strategies for an independent-axle all-wheel-drive electric vehicle. A single-motor rear-wheel drive Cadillac LYRIQ provided by General Motors and modeled by MathWorks is being modified into an all-wheel drive architecture. The architecture under study has independently driven front and rear axles, driven by a 50 kW (peak power) front motor and a 182 kW (peak power at 350V) rear motor. The goal of the study is to evaluate and compare the regenerative braking capacity for different regenerative braking strategies. This study aims to assist in the development of the energy management algorithm for the Propulsion Supervisory Controller (PSC). Firstly, two variants of optimal regenerative torque distribution strategies are studied. One without power rate penalties and the other with a power rate penalty.
Technical Paper

Efficiency Improvement in a 48-Volt Mild Hybrid Vehicle Using Rankine Cycle Waste Heat Recovery

2024-11-05
2024-01-4317
The automotive industry faces significant obstacles in its efforts to improve fuel economy and reduce carbon dioxide emissions. Current conventional automotive powertrain systems are approaching their technical limits and will not be able to meet future carbon dioxide emission targets as defined by the tank-to-wheel benchmark test. As automakers transition to low-carbon transportation solutions through electrification, there are significant challenges in managing energy and improving overall vehicle efficiency, particularly in real-world driving scenarios. While electrification offers a promising path to low-carbon transportation, it also presents significant challenges in terms of energy management and vehicle efficiency, particularly in real-world scenarios. Battery electric vehicles have a favorable tank-to-wheel balance but are constrained by limited range due to the low battery energy density inherent in their technology.
Technical Paper

The Single Technology Matrix Process for Fully Formulated Engine Oil Capability Testing

2024-11-05
2024-01-4299
The American Petroleum Institute’s (API) Single Technology Matrix (STM) is a data-based, Virtual Testing process and protocol (utilizes test data, characteristics and features of base stocks and blends coupled with statistical methods and analysis) used to predict the performance capability of a specific engine oil additive technology in a single specified base oil, in a given engine test. The concept was first introduced in 2002, codified and implemented by API in 2007, and updated in 2022. The previously published advantages of STM in the proof-of-performance of engine oils, remain relevant. These advantages include a data space focused on interpolation, documented statistical analysis protocol, limitation to a specific formulation, flexibility in understanding complicated, interactive, or non-linear technology and base oil relationships, and timeliness. There have been numerous changes to, and in, the engine oil industry since the introduction of STM in 2007.
Technical Paper

Effect of Lash Sensitivity on Engine Brake Performance and Valvetrain Dynamics

2024-11-05
2024-01-4313
Abstract Engine brakes are more effective in braking a heavy-duty vehicle during deceleration compared to the traditional clutch-brake system. Therefore, commercial vehicle OEM’s along with regulations, demand the acclimatizing of engine brake (EB) system. To achieve this, it is equally important to adopt to variable valve actuation dynamic valvetrain (VT) system. To help develop these systems, Model Based Product Development approach is used primarily at Eaton. In current work, the effect of valve lash sensitivity on EB performance and VT dynamics is studied using multi physics GT-SUITE models. This helps to understand the impact of lash on valve lift opening, lift loss and overall VT system compliance. In addition to above VT dynamics, its effect on EB power is also studied. This is done using a medium duty 6-cylinder GT-POWER engine model developed from Fast Response Model (FRM) database.
Technical Paper

Performance Evaluation & Development of Engine Oil with Re-Refined Base Oil for Indian Market

2024-11-05
2024-01-4302
The imperative for sustainability has spurred innovation across industries with a growing emphasis on minimizing environmental impact. In the transportation sector, optimizing engine lubricants emerges as a crucial avenue for achieving sustainable performance as engine oil is the primary lubricants waste stream. Re-Refined Base Oil (RRBO) presents a compelling solution, offering a sustainable alternative to conventional base oils. By reclaiming and recycling used oil, RRBO not only minimizes waste but also embodies the ethos of circularity, promoting resource efficiency and environmental stewardship. This study presents the collaborative efforts between an Indian Automotive OEM and key Lubricant Technology Partner towards the development of engine oil utilizing Re-Refined Base Oil (RRBO) for automotive applications.
Technical Paper

Understanding Energy Footprints of the Existing School Bus Fleets - A Case Study

2024-11-05
2024-01-4335
Vehicle electrification has emerged as a pivotal area of research across diverse industries. When applied to heavy-duty vehicles (i.e., school buses), it presents a unique opportunity for the automotive sector to lead sustainability efforts. Beyond energy savings, the electrification of school buses offers advantages such as improved children's health, reduced greenhouse gas emissions, and enhanced green vehicle routing, inspiring broader adoption of eco-friendly practices. This study primarily aims to analyze the energy-saving effects and economic viability resulting from the electrification of existing school bus routes. Specifically, the research examines the drive cycles of operational bus routes and evaluates the energy demand and cost implications associated with transitioning from conventional buses (diesel buses) to electric buses or other alternative powertrains for fleet operations.
Technical Paper

Co-Simulation of a Powertrain Digital Twin with Off-Highway Machine Simulations for the Prediction of Performance and Emissions for Real-World Machine Handling Cycles

2024-11-05
2024-01-4271
A digital twin is a digital representation of a planned or real physical system, product, or process that functions as its practically identical digital counterpart for tasks such as testing, integration, monitoring, and maintenance. Creating digital twins allows the ‘digital system’ or ‘digital product’ to be tested faster-than-real-time improving overall efficiency and reducing time of a programme. The HORIBA Intelligent Lab virtual engineering toolset was used produce an empirically based digital twin of a contemporary off-highway diesel Internal Combustion Engine (ICE). These empirical models were then coupled with simulations developed by AgriSI and IPG CarMaker to predict performance and emissions for real-world machine handling cycles of off-highway machines such as ploughing, planting, weeding, and fertilising.
X