Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

USE OF ALUMINUM IN PRESENT AND FUTURE MOTOR CARS

1920-01-01
200038
Although aluminum is the most abundant metal in the earth's crust, it was not until the early eighties that means were discovered for reducing it from its ores in such quantities and at such cost as to make it a commercial possibility. The world immediately began to find uses for this material. Two groups developed; one, assuming for aluminum properties that it did not possess, thought that it would in time replace all other metals; the other, which, reacting from the first-mentioned view due to failures and disappointments, thought it had little use. It was afterward realized that much research was necessary to make aluminum a really commercial metal. One of the main aims of the automobile engineer is to obtain lightness combined with proper strength. The paper deals with decreasing the weight of automobiles by more extended use of aluminum alloys. The physical properties of aluminum are described in considerable detail and its varied uses are enumerated.
Technical Paper

FACTORS INVOLVED IN FUEL UTILIZATION

1920-01-01
200060
From a laboratory examination of the controlling relationships between carburetion and engine performance still in progress, the general conclusions so far reached include fuel metering characteristics, the physical structure of the charge, fuel combustion factors and details of engine design and manufacture. In every throttle-controlled engine, the variation in fuel metering for best utilization is inversely functional with the relative loading and with the compression ratio, but the nature of the fuel leaves these general relationships undisturbed. The physical structure of the charge influences largely the net engine performance and the order of variation of the best metering with change in load. Perfect homogeneity in the charge is theoretically desirable but entails losses in performance.
Technical Paper

A MODIFIED DESIGN OF CLASS B TRUCK ENGINE

1919-01-01
190031
THE design of a modification of the Class B Government standardized truck engine is presented, the principal object being a saving in weight without sacrificing either durability or safety factors. The crankcase design is rigid, but the metal is distributed so that the weight will be a minimum. The crankshafts are made of chrome-nickel steel of an elastic limit of 120,000 lb. per sq. in., which further carries out the idea of durability with low weight. The connecting-rod length is slightly more than twice that of the stroke, and this, with light-weight pistons, obviates vibration, without adding weight to the engine on account of increased cylinder height. The flywheel and bell-housing diameters were selected with a view to securing enough flywheel weight for smooth running without increasing the engine weight materially. All-steel supports reduce breakage of arms to a minimum. The manifolds are carefully designed to give economical performance, even with low-grade fuels.
Technical Paper

BURNING KEROSENE IN TRACTOR ENGINES

1917-01-01
170031
The author states as his object a review of what has been done and what must be done to make tractors successful in operating on low-grade fuels, especially kerosene. He takes up in order the four principal methods in common use of applying heat to vaporize kerosene, pointing out the advantages and disadvantages of each method and of its modifications. The author then cites various experiments with different types of carbureters in burning kerosene, drawing at length upon his own experience in this connection. He cites difficulties with gas distribution, manifold condensation, pistons and spark-plugs and points out that carbureter design is inseparable from considerations of tractor engine and manifold design. That better progress has not been made in the past in developing kerosene-burning tractor engines is stated to be largely owing to the fact that there has not been sufficient cooperation between engine and carbureter manufacturers.
Technical Paper

SOME ESSENTIAL FEATURES OF HIGH SPEED ENGINES

1917-01-01
170004
The author outlines methods for producing high-speed engines with high mean effective pressure and gives data resulting from several years' experimental work. He discusses the desirable stroke-bore ratios; valve area, weight, dimensions, location and timing; compression ratios; ignition requirements; and the location and means for operating camshafts and other valve-actuating mechanism. Data are given regarding the best material and dimensions for pistons and the desirable number of rings. The physical characteristics of alloy steel desirable for use in connecting-rods are mentioned. Similar data, including dimensions and factors controlling the construction of the crankshaft and its bearings are included. The relation of the inertia stresses set up by reciprocating parts to those due to the explosion and compression pressure on the piston head is indicated, and the maximum total stress deduced.
Technical Paper

PROBLEMS IN HIGH-SPEED ENGINE DESIGN

1916-01-01
160023
The author outlines in a general way the relation of car performance to modern engine development. He considers particularly weight reduction and torque performance of high-speed engines, giving the undesirable characteristics attending the increased torque range gained by higher speed. He next discusses the relation of torque to total car weight, to acceleration and to hill-climbing ability and suggests a method of determining the value of a car in terms of its performance ability. The author holds incorrect those systems in which the amount of lubrication is in proportion to speed only; and in which oil for crankshaft and crankpin bearings must cool as well as lubricate them. He shows a system designed to solve these oiling problems. Static, running and distortion balance of a rotating mass are defined by the author, who shows how they apply to a large number of types of crankshafts.
Technical Paper

Performance and Exhaust Emission in Spark Ignition Engine Fueled with Methanol-Butane Mixture

1800-01-01
871165
To improve the cold startability of methanol, methanol-butane mixed fuel was experimented. Engine performance and exhaust emissions are obtained with methanol-butane mixed fuel. These characteristics are compared with those of methanol and gasoline. The mixing ratios of methanol and butane are 50:50 (M50), 80:20 (M80), and 90:10 (M90) based on the calorific value. As a result, M90 produces more power than gasoline and more or less than methanol depending on the engine speed and the excess air ratio. Brake horse power of M90 is higher than that of gasoline by 5 - 10 %, and brake specific fuel consumption is smaller than that of gasoline by 17 % to the maximum based on the calorific value. NOx emission concentrations for M90 are lower than those for gasoline and higher than those for methanol because of the effect of butane, CO emission concentrations are somewhat lower than those for methanol and gasoline.
X