Refine Your Search




Search Results

Journal Article

Investigation on Underhood Thermal Analysis of Truck Platooning

Abstract This paper presents a combined aero-thermal computational fluid dynamic (CFD) evaluation of platooning medium duty commercial vehicles in two highway configurations. Thermal analysis comparison is made between an approach that includes vehicle drag reduction on engine heat rejection and one that does not by assuming a constant heat rejection based on open road conditions. The paper concludes that accounting for aerodynamic drag reduction on engine heat load provides a more real world evaluation than assuming a constant heat load based on open road conditions. A 3D CFD underhood thermal simulations are performed in two different vehicle platooning configurations; (i) single-lane and (ii) two-lane traffic conditions. The vehicle platooning consists of two identical vehicles, i.e. leading and trailing vehicle. In this work, heat exchangers are modeled by two different heat rejection rate models.
Journal Article

Design of High-Lift Airfoil for Formula Student Race Car

Abstract A two-dimensional model of three elements, high-lift airfoil, was designed at a Reynolds number of ?????? using computational fluid dynamics (CFD) to generate downforce with good lift-to-drag efficiency for a formula student open-wheel race car basing on the nominal track speeds. The numerical solver uses the Reynolds-averaged Navier-Stokes (RANS) equation model coupled with the Langtry-Menter four-equation transition shear stress transport (SST) turbulence model. Such model adds two further equations to the ?? − ?? SST model resulting in an accurate prediction for the amount of flow separation due to adverse pressure gradient in low Reynolds number flow. The ?? − ?? SST model includes the transport effects into the eddy-viscosity formulation, whereas the two equations of transition momentum thickness Reynolds number and intermittency should further consider transition effects at low Reynolds number.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Flow Analysis between Two Bluff Bodies in a Close Distance Platooning Configuration

Abstract This article analyses the flow field between two 1/8-scale Generalized European Transport System (GETS) models which are placed in a two-vehicle platoon at close distances. Numerical simulations using the lattice Boltzmann method together with a wind tunnel experiment (open jet facility, OJF) were executed. Next, to balance measurements, coaxial volumetric velocimetry (CVV) measurements were performed to obtain information about the flow field. Three intervehicle distances, 0.10, 0.45 and 0.91 times the vehicle length, were tested for various platoon configurations where the vehicles in the platoon varied in terms of front-edge radius and the addition of tails. At the smallest intervehicle distance, the greatest reductions in drag were found for both the leading and trailing vehicles. The flow in the gap between the two vehicles follows an S-shaped path with small variations between the configurations.
Journal Article

Comparison of Various Drag Reduction Devices and Their Aerodynamic Effects on the DrivAer Model

Abstract In this study, two types of drag reduction devices (a horizontal plate, and a vertical plate) are used to weaken the downwash of the upper flow and c-pillar vortex of the DrivAer notchback model driving at high speed (140 km/h). By analyzing and comparing 15 cases in total, the aerodynamic drag reduction mechanism can be used in the development of vehicles. First, various CFD simulation conditions of a baseline model were compared to determine the analysis condition that efficiently calculates the correct aerodynamic drag. The vertical plate and horizontal plate applied in the path of the c-pillar vortex and downwash suppressed vortex development and induced rapid dissipation. As a result, the application of a 50-mm wedge-shaped vertical plate to the trunk weakened the vortex and reduced the drag by 3.3% by preventing the side flow from entering the trunk top.
Journal Article

Parametric Study of Asymmetric Side Tapering in Constant Cross Wind Conditions

Abstract Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients.
Journal Article

Steady Aeroelastic Response Prediction and Validation for Automobile Hoods

Abstract The pursuit of improved fuel economy through weight reduction, reduced manufacturing costs, and improved crash safety can result in increased compliance in automobile structures. However, with compliance comes an increased susceptibility to aerodynamic and vibratory loads. The hood in particular withstands considerable aerodynamic force at highway speeds, creating the potential for significant aeroelastic response that may adversely impact customer satisfaction and perception of vehicle quality. This work seeks an improved understanding in computational and experimental study of fluid-structure interactions between automobile hoods and the surrounding internal and external flow. Computational analysis was carried out using coupled CFD-FEM solvers with detailed models of the automobile topology and structural components. The experimental work consisted of wind tunnel tests using a full-scale production vehicle.
Journal Article

Overset Mesh-Based Computational Investigations on the Aerodynamics of a Generic Car Model in Proximity to a Side-Wall

Abstract This article discusses an approach to simulating a generic idealized car model (Ahmed body) moving in close proximity to a side-wall, using a transient Computational Fluid Dynamics (CFD) method. This phenomenon is very important in motorsports, where racing close to the safety barrier is common. Driving in close proximity to a side-wall alters the aerodynamic characteristics of the vehicle significantly; however, only a handful of published works exist in this area. Additionally, the experimental studies conducted in the past suffer from certain inadequacies, especially in terms of simulating the side-wall. This casts some uncertainty as to the relevance of these studies to the real-world problem. The present study attempts to imitate the real-world flow phenomenon by taking a nontraditional CFD approach of translating the body relative to the stationary surrounding fluid and side-wall instead of the classical method of flowing air over a stationary vehicle model.
Journal Article

Reduced-Order Modeling of Vehicle Aerodynamics via Proper Orthogonal Decomposition

Abstract Aerodynamic optimization of the exterior vehicle shape is a highly multidisciplinary task involving, among others, styling and aerodynamics. The often differing priorities of these two disciplines give rise to iterative loops between stylists and aerodynamicists. Reduced-order modeling (ROM) has the potential to shortcut these loops by enabling aerodynamic evaluations in real time. In this study, we aim to assess the performance of ROM via proper orthogonal decomposition (POD) for a real-life industrial test case, with focus on the achievable accuracy for the prediction of fields and aerodynamic coefficients. To that end, we create a training data set based on a six-dimensional parameterization of a Volkswagen passenger production car by computing 100 variants with Detached-Eddy simulations (DES).
Journal Article

Functional Modelling of Systems with Multiple Operation Modes: Case Study on an Active Spoiler System

Abstract This article presents the application of the Enhanced Sequence Diagram (ESD) for the analysis of the functionality of a system with shape-changing aspects in the context of its multiple operational modes, considering an active real spoiler as a case study. The article provides new insights on the ESD support for model-based capture and articulation of functional requirements across multiple operation modes of the same system, with appropriate detail on attributes and metrics, and the alignment of these attributes and metrics in line with the concept of time through scope lines. The article also provides a comprehensive argument and discussion, exemplified based on the case study, for the support that the ESD provides for early systems functional and architecture analysis, within the context of a broader model-based Failure Mode Analysis methodology.
Journal Article

Nonlinear Flutter Analysis of Curved Panel under Mechanical and Thermal Loads Using Semi-Analytical and Finite Volume Methods

Abstract The vibration behavior of components exposed to aerodynamic loads must be taken into consideration when designing aerial vehicles. Numerical simulation plays a key role in developing more realistic analytical models for panel flutter analysis. The notable feature of the present research is the use of two methods for the aeroelastic analysis of two-dimensional curved panels with cylindrical bending. In the first approach, the finite volume method (FVM) is used for supersonic viscous flow and nonlinear structural model while full Navier-Stokes equations are discretized. In the second approach, the third-order nonlinear piston theory aerodynamics in addition to mechanical and thermal loads is assumed. Moreover, the semi-analytical weighted residual method for the nonlinear curved panel is utilized. These approaches are concurrently compared with each other for the first time. Furthermore, Hamilton’s principle is used and partial differential equations (PDEs) are derived.


A shift in the oil mix Tony Lewin speaks with Dr Mathias Woydt of Berlin's Federal Institute for Materials Research and Testing Wind cheater As OEMs strive for greater vehicle efficiency, subtle changes in aerodynamics can deliver significant rewards, as Ian Adcock discovers

Vehicle Aerodynamics, 2013

The 25 papers in this technical paper collection cover aerodynamics development, fuel economy, unsteady aerodynamics, cooling airflow, fundamental aerodynamics, and test facilities.

Vehicle Aerodynamics, 2018

Vehicle aerodynamic development, drag reduction and fuel economy, handling and stability, cooling flows, surface soiling and water management, vehicle internal environment, tyre aerodynamics and modelling, aeroacoustics, structural response to aerodynamic loading, simulating the on-road environment, onset flow turbulence, unsteady aerodynamics, fundamental flow structures, new test methods and facilities, new applications of computational fluid dynamics simulation, competition vehicle aerodynamics.

Automotive Engineering International 2009-05-01

Spearheading the EV revolution Tesla Motors' JB Straubel has built an engineering team that is challenging the traditional auto-engineering culture- and may be a blueprint for the future. Truckin' along Alternative power sources, aerodynamic designs, and electronics intergration mark the road ahead for the heavy-truck industry. Roads with something to say With the goal of reducing the accident rate and improving traffic flow, automakers and suppliers are developing new technologies to make intelligent transportation systems even smarter. a new fuel in town A company new to the automotive industry brings fresh ideas and products to the vehicle-electrification party. A featherweight future Hypercar visionary Amory Lovins sees auto engineering following aerospace in its use of advanced structural composites. Virtual revolution Liquid crystal displays are replacing analog gauges to give drivers more information in a reconfigurable format.

Guidelines for Aerodynamic Assessment of Mass-Produced Cars and Light-Duty Trucks Using Computational Fluid Dynamics

This document outlines general requirements for the use of Computational Fluid Dynamics (CFD) methods for aerodynamic simulation of mass-produced cars and light-duty trucks. The document provides guidance for aerodynamic simulation with CFD methods to support current vehicle characterization, vehicle development, vehicle concept development and vehicle component development. The guidelines presented in the document include Navier-Stokes and Lattice-Boltzmann based solvers.

Constant Speed Aerodynamic Procedure for Heavy Vehicles

Develop and document an aerodynamic constant speed procedure for heavy vehicles that can accurately calculate the aerodynamic performance through the typical expected yaw angles during operation at highway speeds.

Glycol Recovery Vehicle (GRV) – Self-Propelled

This SAE Aerospace Resource Document (ARD) document covers the requirements for a self-propelled GRV, intended for use at airports to collect spent aircraft de-icing fluid (ADF) from the surface of de-icing areas. This unit will recover de-icing fluid from the surface, which will be stored in a containment unit on the vehicle. The GRV must be capable of night and day operations in all weather conditions, as required.