Refine Your Search

Topic

Author

Affiliation

Search Results

Video

The Correlation of As-Manufactured Products to As-Designed Specifications: Closing the Loop on Dimensional Quality Results to Engineering Predictions

2012-03-09
Simulation-based tolerance analysis is the accepted standard for dimensional engineering in aerospace today. Sophisticated 3D model-based tolerance analysis processes enable engineers to measure variation in complex, often large, assembled products quickly and accurately. Best-in-class manufacturers have adopted Quality Intelligence Management tools for collecting and consolidating this measurement data. Their goal is to completely understand dimensional fit characteristics and quality status before commencing the build process. This results in shorter launch cycles, improved process capabilities, reduced scrap and less production downtime. This paper describes how to use simulation-based approaches to correlate the theoretical tolerance analysis results produced during engineering simulations to actual as-built results. This allows engineers to validate or adjust as-designed simulation parameters to more closely align to production process capabilities.
Video

Real-World Driving Pattern Recognition for Adaptive HEV Supervisory Control: Based on Representative Driving Cycles in Midwestern US

2012-06-18
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Video

Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming

2012-05-29
Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV Presenter Johannes Kristinsson
Video

Using the Beer-Lambert Law and Kubelka-Munk Theory to Model Percent Transmittance of Multilayer Composite Coatings

2012-05-23
Transmission of light through automotive topcoat and primer layers can lead to degradation of the underlying electrocoat layer and to topcoat delamination. In order to protect against this, it is critical that transmission of both ultraviolet wavelengths and certain visible wavelengths be effectively blocked by the topcoat and primer layers. The clearcoat, basecoat and primer each have their own role and combine to protect against light transmission. The transmittance of these combined layers is typically measured by the Integrating Sphere UV-Visible Spectrophotometer. It would both simplify measurement of the topcoat systems and allow better system modeling if these layers could be measured separately and combined mathematically. We demonstrate here that absorbing and reflecting pigments can be effectively modeled using the Beer-Lambert law while results for scattering pigments are consistent with the Kubelka-Munk theory.
Video

Review and Assessment of the ISO 26262 Draft Road Vehicle - Functional Safety

2012-09-18
ISO 26262 is the first comprehensive automotive safety standard that addresses the safety of the growing number of electric/electronic and software intensive features in today's road vehicles. This paper assesses the standard's ability to provide safety assurance. The strengths of the standard are: (1) emphasizing safety management and safety culture; (2) prescribing a system engineering development process; (3) setting up a framework for hazard elimination early in the design process; (4) disassociating system safety risk assessment from component probabilistic failure rate. The third and fourth strengths are noteworthy departure from the philosophy of IEC61508. This standard has taken much-needed and very positive steps towards ensuring the functional safety of the modern road vehicles. SAE publications from industry show a lot of enthusiasm towards this standard.
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Video

Reduction of CO2 Emissions using Variable Compression Ratio MCE-5 VCRi Technology - Facts & Prospects

2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
Video

ThrottleCharger; Fuel Economy Improvement using Throttling Work for Electric Power Generation.

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Video

Development of High-Efficiency Rotary Engines

2012-05-10
In this presentation, we will explain how the traditional Miller Cycle - which has its limitations in the traditional four-stroke, Otto Cycle engine provides new opportunities for greater fuel efficiency gains and engine downsizing when incorporated in a split-cycle combustion process. Results will also be shared from studies showing how these implementations can provide both significant drops in fuel consumption and increases in power when incorporated into some of today's most economic vehicles. Presenter Stephen Scuderi, Scuderi Group LLC
Collection

Military Vehicle Technology, 2005

2010-09-15
This technical paper collection contains 49 papers detailing military vehicle technology. Topics covered include: reliability growth for military vehicles, upgrading readiness, rapidly installed fluid transfer system, robotic technologies, electrical systems modeling and simulation, nanofluid research, and more.
Collection

Virtual Design and Engineering, 2010

2010-08-02
The 9 papers in this technical paper collection pertain to the creation and application of various tools that will allow for the design and manufacture of parts, equipment, facilities and tests that eliminate the need for physical part prototyping early in a program. The ability to model various aspects of design, test and manufacturing allows for more accurate, cost effective and faster development and product delivery to market.
Collection

Variable Valve Actuation, 2010

2010-08-02
The 13 papers in this technical paper collection discuss variable valve actuation mechanisms, devices, and systems; and the impact and control of such systems on thermodynamics, combustion, fuel economy, emissions, and performance.
Collection

Vehicle Dynamics & Simulation, 2007

2010-09-23
The 33 papers in this technical paper collection discuss vehicle dynamics and simulation in the areas of vehicle rollover, tire forces/moments and vehicle stability, vehicle dynamics handling and control, advances in methods for vehicle systems design and control, and advances in vehicle dynamics measurements and validations.
Collection

Thermal Systems & Management Systems, 2007

2010-09-23
Providing thermal comfort to the occupants and thermal management of components in an energy efficient way has challenged the automotive industry to search for new and innovative approaches to thermal management. Hence, management of heat flow, coolant flow, oil flow, and airflow is extremely important as it directly affects the system performance under full range of vehicle operating conditions. The 31 papers in this technical paper collection describe methods or concepts to increase efficiency, improve occupant comfort, improve test methodology and minimize the environmental impact of the climate control system; and thermal management components addressing design and/or application topics.
Collection

Reliability and Robust Design in Automotive Engineering, 2007

2010-09-23
The 64 papers in this technical paper collection cover automotive engineering reliability and robust design topics including fatigue reliability; design of experiments (DOE); model validation and verification; decision under uncertainty and uncertainty modeling; thermal and fluid systems; reliability-based design optimization and robust design; and innovative industrial applications.
Collection

Multi-Dimensional Engine Modeling, 2008

2010-09-23
Multi-dimensional engine modeling has gradually established itself in the engineering community as a means to gain a deeper understanding of processes related to turbulent, transient, chemically reacting, two-phase flows. The 27 papers in this technical paper collection reflect the truly multidisciplinary nature of the field covering areas such as chemical kinetics, combustion and spray modeling, turbulence, mesh generation, and approaches targeting improved computational efficiency.
Collection

Modeling of SI and Diesel Engines, 2007

2010-09-23
The 34 papers in this technical paper collection cover engine breathing, intakes and exhausts; engine combustion, SI Engines; and modeling of engines for control applications.
Collection

Latest Advances in Commercial Vehicle Chassis and Suspensions, 2010

2010-09-27
The 30 papers in this technical paper collection focus on heavy tire modeling/testing and evaluation; vehicle dynamics; wide based tires, sustainability and maintenance; air suspension, off-road chassis and suspension; hybrid drive and chassis; all wheel/multi-wheel drive vehicle dynamics and performance; testing and experimental analysis of chassis and suspension; and advanced chassis control and rollover.
X