Refine Your Search

Topic

Author

Affiliation

Search Results

SAE International

2018-04-17
The new standard provides detailed information, guidance, and methods for demonstrating EMC on civil aircraft, enhancing flight safety for both US and UK.
Award

Cliff Garrett Turbomachinery Engineering Award - Participate - SAE International

2023-08-31
Established in 1984, this award promotes engineering developments and the presentation of SAE papers on turbomachinery and/or developments that enable or advance the use of turbomachinery. The award honors Cliff Garrett and the inspiration he provided to engineers by his example, support, encouragement, and many contributions as an aerospace pioneer. To perpetuate recognition of Garrett's achievements and dedication as an aerospace pioneer, SAE administers an annual lecture by a distinguished authority in the engineering of turbomachinery and/or engineering related to creating, enabling, or advancing applications of turbomachinery in power systems, on-highway, off-highway, aircraft, and/or spacecraft uses. The award is made possible by a contribution from the Garrett Corp.

SAE International

2018-03-27
With successes in the 50-shp class gas turbine engine class for unmanned aerial vehicles (UAVs), UAV Turbines has reached an agreement with the U.S. Army’s Reliable Advanced Small Power Systems (RASPS) program to design, manufacture and test a 200 shp class advanced technology turbine engine.
Article

Designing composite engine cowling for improved heat resistance

2018-02-05
Thermal imaging data obtained from a FLIR high-performance camera shows that the expected turbine output temperature is approximately 285°C when the helicopter is in forward flight. However, during hover operations a steady state temperature of about 343°C will be reached.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

Impacts of Injection Pressure and Timing on Energy-Assisted Compression-Ignition Combustion with Gaussian-Shaped Ribbed Piston Bowl Design

2024-09-16
2024-01-4133
The impacts of injection pressure with a Gaussian-shaped ribbed piston bowl design for energy-assisted compression-ignition (EACI) combustion were investigated in an optically accessible engine. Three injection pressures (600, 800, and 1000 bar) were investigated for three potential first injection timings corresponding to injection timings for injection dwells of 1.5, 2.0, and 2.5 ms of a fixed second injection timing of -5.0 CAD. Reliable positioning of the hot combusted gases from the first injection near the injector tip enables mixing-controlled combustion of the second injection. Results demonstrated the EACI capabilities of pairing high injection pressures with the Gaussian-shaped ribbed piston bowl. At higher injection pressures, the redirection of fuel vapors from the in-line fuel jet back toward the ignition assistant (IA) increased the residence time the fuel mixture was exposed to the hot zone from the ignition assistant, reducing the possibility of misfires.
Technical Paper

Extension of Diesel Engine Power via Electrically Assisted Turbocharger

2024-09-16
2024-01-4136
The power demand for unmanned ground systems (UGS) and unmanned aircraft systems (UAS) has been ever-increasing to support important military operations. Mild hybridization technologies have the potential to address the ever-increasing power demand. The objective of this study is to investigate the capability of an electrically assisted turbocharger (EAT) as one mild hybridization method. A motor-generator (M/G) was integrated to a turbocharger to generate electricity using the engine exhaust energy, or to spin the turbocharger using the energy stored in energy storage device. The EAT was implemented to a 2-liter turbocharged direct-injection diesel engine fueled with jet fuel. Then, the operation of the EAT was examined and the results were compared to the baseline. The target manifold pressure was regulated by the M/G, which applies varying amounts of positive or negative torque to increase or decrease the speed of the EAT.
Technical Paper

Piston Ring / Cylinder Bore Friction Under Flooded and Starved Lubrication Using Fresh and Aged Engine Oils

1998-10-19
982659
The friction reducing capability of engine oils in the piston ring/cylinder bore contact was investigated under fully-flooded and starved lubrication conditions at 100° C using a laboratory piston ring/cylinder bore friction rig. The rig is designed to acquire instantaneous transient measurements of applied loads and friction forces at the ring/bore interface in reciprocating motion over a 50.8 mm stroke. The effects of increasing load and speed on the friction coefficient have been compared with new and used engine oils of different viscosity that were formulated with and without friction modifying additives. Test results with fully formulated engine oils containing molybdenum dithiocarbamate (MoDTC) show that friction is always lower than that obtained with non-friction modified oils but in regions of persistent starvation the coefficient of friction can increase significantly, approaching levels equivalent to fully-flooded non-friction modified formulations.
Standard

Steel, Corrosion- and Heat-Resistant, Bars, Wire, Forgings, Mechanical Tubing, and Stock for Forging and Heading, 15Cr - 25.5Ni - 1.2Mo - 2.1Ti - 0.006B - 0.30V (Alloy A286), Consumable Electrode Remelted, 1650 °F (899 °C) Solution Heat Treated

2024-04-10
CURRENT
AMS5734L
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing up to 5.00 inches (127 mm), inclusive, in nominal diameter or least distance between parallel sides (thickness), and stock for forging or heading.
X