Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Just down the road from SAE International’s headquarters in Warrendale, Pennsylvania, Mark Sokalski has been quietly working out how to maximize piston-driven engine efficiency – with an internal combustion engine mechanism that doesn’t follow the norm.
Originally published in 1995, now updated and expanded with new specifications, this seminal work focuses on the development of Allied aircraft engines that helped turn the tide of World War II.
Established in 1984, this award promotes engineering developments and the presentation of SAE papers on turbomachinery and/or developments that enable or advance the use of turbomachinery. The award honors Cliff Garrett and the inspiration he provided to engineers by his example, support, encouragement, and many contributions as an aerospace pioneer. To perpetuate recognition of Garrett's achievements and dedication as an aerospace pioneer, SAE administers an annual lecture by a distinguished authority in the engineering of turbomachinery and/or engineering related to creating, enabling, or advancing applications of turbomachinery in power systems, on-highway, off-highway, aircraft, and/or spacecraft uses. The award is made possible by a contribution from the Garrett Corp.
With successes in the 50-shp class gas turbine engine class for unmanned aerial vehicles (UAVs), UAV Turbines has reached an agreement with the U.S. Army’s Reliable Advanced Small Power Systems (RASPS) program to design, manufacture and test a 200 shp class advanced technology turbine engine.