Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Hydraulic Wheel Cylinders for Automotive Drum Brakes

2013-07-09
CURRENT
J101_201307
This document specifies minimum performance and durability requirements for satisfactory vehicle usage, and it is applicable to wheel cylinder assemblies from commercial production, after production shipment, shelf storage, and remanufacture (factory rebuild).
Standard

HYDRAULIC MASTER CYLINDERS FOR MOTOR VEHICLE BRAKES TEST PROCEDURE

1991-06-01
HISTORICAL
J1153_199106
This SAE Standard specifies the test procedure to determine minimum performance and durability characteristics for master cylinder assemblies of current established designs, components of which conform to SAE Standards. It is applicable to new assemblies from commercial production and remanufacture (factory rebuild). The minimum performance and durability requirements are specified in SAE J1154.
Standard

HYDRAULIC MASTER CYLINDERS FOR MOTOR VEHICLE BRAKES—TEST PROCEDURE

1976-07-01
HISTORICAL
J1153_197607
The recommended practice specifies the test procedure to determine minimum performance and durability characteristics for master cylinder assemblies of current established designs, components of which conform to SAE Standards. It is applicable to new assemblies from commercial production and remanufacture (factory rebuild). The minimum performance and durability requirements are specified in SAE J1154, Hydraulic Master Cylinders for Motor Vehicle Brakes—Performance Requirements.
Standard

Hydraulic Master Cylinders for Motor Vehicle Brakes Test Procedure

2012-02-17
CURRENT
J1153_201202
This SAE Standard specifies the test procedure to determine minimum performance and durability characteristics for master cylinder assemblies of current established designs, components of which conform to SAE Standards. It is applicable to new assemblies from commercial production and remanufacture (factory rebuild). The minimum performance and durability requirements are specified in SAE J1154.
Standard

MOTOR VEHICLE BRAKE FLUID

1995-01-01
HISTORICAL
J1703_199501
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Motor Vehicle Brake Fluid

2000-10-01
HISTORICAL
J1703_200010
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Motor Vehicle Brake Fluid

2024-03-12
CURRENT
J1703_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Journal Article

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

2012-04-16
2012-01-0380
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that produces low NO and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom-machined pistons designed for RCCI operation.
Technical Paper

Towards Robust Hydrogen Combustion: Precise Lube Oil Consumption Measurement as an Enabler for Tackling Pre-ignition

2024-11-05
2024-01-4290
The use of carbon-free fuels, such as ammonia or hydrogen, or at least carbon neutral fuels, such as green methane or methanol is one of the most important paths in the development of clean internal combustion engines (ICE). Especially for large, heavy-duty engines, this seems to be the most promising route, as replacing them with battery electric or fuel cell drives poses even greater challenges, at least for the time being. But for some applications or areas of the world, even small ICEs for trucks, passenger cars or off-road vehicles, operated with alternative fuels will still remain the mean of choice. One of the biggest challenges in the development of hydrogen combustion engines is achieving high compression ratios and mean effective pressures due to combustion anomalies, caused by the low ignition delay and broad flammability limit of hydrogen. Oil droplets are considered to be one of the main triggers for pre-ignition and knocking.
Technical Paper

In-Cylinder Sampling Analysis of Soot Precursors During Bio-Derived Lactone Combustion in a Single-Cylinder Diesel Engine

2024-11-05
2024-01-4309
The development of new fuels for internal combustion engines requires further technical support by understanding the pollutant formation mechanism in various phases of combustion so that emissions can be minimized. This research will therefore utilize a bespoke in-cylinder sampling system to analyze the precursors of PAHs and particulates during bio-derived lactone combustion in a single-cylinder diesel engine. The sampling system was composed of a poppet-type in-cylinder sampling valve that displaced one of the engine intake valves and protruded into the combustion chamber beyond the flame quenching layer, and a Gas Chromatography Flame Ionization Detector (GC-FID) that examined the samples. The sampling valve was electromagnetically actuated, and its operation was referenced to the engine crank shaft encoder, allowing the valve to open at any Crank Angle Degree (CAD) within a timing resolution of 0.2 CAD.
Technical Paper

Quantifying Environmental and Health Impacts of Conventional Diesel and Methane Diesel RCCI Engine Emissions: A Numerical Analysis

2024-11-05
2024-01-4307
A reactivity-controlled compression ignition (RCCI) engine offers ultralow soot and nitrogen oxide (NOx) emission in addition to higher thermal efficiency than diesel or compression ignition (CI) engines. However, the higher emissions of unburned hydrocarbons (HC) and carbon monoxide (CO) from RCCI engines pose a significant challenge that hinders their adoption in the future automotive sector. Additionally, HC includes several hydrocarbons that harm human health and the environment. This study aims to minimize HC and CO formation and emissions by implementing different injection strategies, including adjustments to spray angle configuration, injection timing, and fuel premixing ratio. Additionally, the study examines how different injection strategies affect the spatial and temporal distribution of HC and CO inside the combustion chamber.
X