Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modeling and Simulation of Automotive AC Components (Condenser & Piston) with Experimental Validation

2020-09-25
2020-28-0357
Automotive Air Conditioning is the process of removing the heat and moisture from the interior of an occupied space to improve comfort of occupants. A condenser is a device or unit used to condense refrigerant from its gaseous to its liquid state, by cooling it. In so doing, the latent heat is given up by the substance and transferred to the surrounding environment. It is made of Aluminum Alloy Material and subjected to very high internal stresses due to refrigerant pressure, thermal / inertia and dynamic load. In order to evaluate the structural integrity of the condenser assembly under these loading conditions, operating frequency should be far away from the resonance frequency and component design should be robust to sustain external excitation load coming from the engine & road. The above design evaluation criteria is also applicable for piston of AC’s reciprocating compressor.
Technical Paper

Assessment of the Metallurgical and Mechanical Properties of Stir cum Squeeze Cast A356 with 5wt. % SiC and x wt. % Flyash Hybrid Composites

2020-09-25
2020-28-0397
The forged connecting rod and pin experience a large amount of stresses due to cyclic load for a long period of time induced by the reciprocating movement of the piston. The proposed work focused to produce lightweight composites with high strength using waste flyash and simple manufacturing process. In this context, the proposed experimental work was formulated to develop aluminium alloy hybrid metal matrix composite of A356 alloy with silicon carbide and flyash processed through stir cum squeeze casting process under optimal parametric condition. The samples were subjected to varying flyash content of 0, 5, 10wt.% and SiC of 5wt.% kept constant. Responses like metallography, hardness, impact strength, flexural strength, fatigue strength were observed for the manufactured hybrid composites. There was a significant improvement in the properties with a higher weight percentage addition of 10wt.% flyash and 5wt.% SiC with A356 hybrid composites.
Technical Paper

Design and Couple Field Analysis of Uncoated and Coated Aluminium Metal Matrix Hybrid Composite Piston

2020-09-25
2020-28-0391
Piston is the most imperative part of an automotive engine in which it exchanges drive due to expanding gas in the cylinder to the crankshaft through the piston rod. During the combustion of fuel charge inside the ignition chamber, high pressure and temperature are developed and the piston is imperiled to high mechanical and thermal stresses. The main objective of the proposed work is to analyse the stress distributions and thermal behaviour of uncoated A356 with 5wt% SiC and 10wt% Fly Ash HMMC piston crown and Plasma sprayed Yttrium Stabilized Zirconia (Y-PSZ) coated A356 with 5wt% SiC and 10wt% Fly Ash HMMC piston crown. A356 with 5wt% SiC and 10wt% Fly Ash HMMC were fabricated via squeeze casting to improve the performance of a petrol engine. A structural model of an HMMC piston crown was made using CREO software and structural and thermal analysis was done using ANSYS. Further coupled field analysis is done to find the stress and temperature distribution on the piston.
Technical Paper

Heat Flux between Impinged Diesel Spray and Flat Wall

1991-11-01
912460
In a high-speed DI diesel engine, fuel sprays impinge surely on a wall of a piston cavity. Then the phenomenon of the heat transfer between the impinged spray and the wall appears and it has the strong effect on the combustion processes of the engine. The purpose of this study are to clarify basically the heat transfer characteristics. In the experiments, the fuel was injected into the quiescent inert atmosphere with a high temperature under high pressure field, and an evaporative single diesel spray was impinging upon a flat wall. And, the temperature distribution on the wall surface in a radial direction was detected by the Loex-Constantan thin film thermo-couples. Thus, the heat flux between the impinged spray and the wall surface was calculated from the temperature profile within the wall by Fourier's equation using the finite difference method, under the assumption of the one-dimensional heat conduction.
Technical Paper

The STM4 - 120RH and STM4 - 120DH Stirling Engines Performance Comparison

1991-11-01
912478
Stirling Thermal Motors, Inc., (STM) of Ann Arbor, Michigan, has been developing a general purpose Stirling engine designated the STM4-120.* The configuration of the STM4-120 was based on the Ford/Philips automotive Stirling engine which was successfully demonstrated in a 4500 pound Ford Torino in 1976. This engine, designated the 4-215, was a four-cycle, double-acting engine with a fixed angle swashplate drive and produced 175 horsepower (128 kW). During the Ford program, three obstacles to mass production were identified: the complexity of the mean pressure power control, the life and reliability of the rod seals, and the complex geometry and manufacturability of the heater heads. In the conceptual design phase of the STM4-120, effort was concentrated on addressing and overcoming these obstacles.
Technical Paper

Heat Transfer Studies in an Adiabatic Diesel Engine

1991-11-01
912502
Numerical calculation based on finite element method are carried out to calculate the temperature field in an adiabatic diesel engine piston having diameter. 127 mm and made of aluminum alloy. The engine cylinder wall have the coated externally by a thin layer of very high grade ceramic insulating material. The isothermic distribution in the piston body and the heat flow rates to the cooling media at different loads have been depicted for both cases with and without insulation coating. The paper first reviews the current state of development of ‘adiabatic’ diesel engine in Europe, U.S.A and the Japan. This review section is followed by a brief description of the common element of hostile features, then comes the experimental program on thermally insulated components for single cylinder engine in the research center of Tabriz and finally by a theoretical section dealing with the performance potential of composed engine schemes based on ‘adiabatic’ engine operation.
Technical Paper

An Analytical Solution for Spherical Joint Mechanism Including Coulomb Friction

1991-11-01
912499
This paper introduces the friction sphere concepts to consider the effects of friction in the spherical joint and presents a new effective numerical solution method for the analysis of multibody systems with spherical joint under Coulomb friction. Complete equations of motion and reaction forces are derived for dynamic analysis of multibody systems by using Lagrangian formulation. The numerical solutions of the new method are illustrated by its applications to the variable displacement car air conditioning compressor, which has five pistons connected to the wobble plate by five actuating rods with spherical joints at both ends. The new method successively accomplishes the solutions of the equations of motion and reaction forces of the compressor in less computing time than the conventional method.
Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
Technical Paper

Swirl Effects on Mixing and Flame Evolution in a Research DI Diesel Engine

1990-10-01
902076
An optically accessible, DI Diesel engine was used to investigate the effect of swirl on fuel-air mixing and flame evolution. Quiescent and swirling conditions were studied at three different fuel-air ratios at an engine speed of 900 RPM. For the mixing studies, performed with nitrogen to prevent combustion, a mirrored piston was used to permit double pass shadowgraph imaging within the combustion chamber. High speed shadowgraph cinematography, using an Argon ion laser, yielded insight into the temporal evolution of the fuel jet and permitted the calculation of penetration speeds and area of the fuel jet as a function of time. With swirl, the penetration rate of the fuel jets was reduced, and the area of the over which fuel was observed increased by 25 percent. Combustion phenomena were studied using backlighting so that the spray and visible light from combustion could be recorded on high speed video.
Technical Paper

Influence of Engine Buildup Variables on the ASTM Sequence VI Fuel Efficient Oil Test

1990-10-01
902164
Using a seven-step quality improvement process, some of the engine build-up factors adversely influencing the severity and precision of the Sequence VI dynamometer test were examined. Insights from engineering (theory) and database (statistical) analyses enabled a 23 factorial experiment to identify oil ring tension, piston ring side clearance, and piston fit as critical parameters in a 3-oil, 9-engine, 28-test program. High ring tension was shown to emphasize the friction reducing capability of higher performing oils and the deficiency of a lower performing oil. Interactions were noted. A helpful correlation of test severity with the engine calibration indicators was shown.
Technical Paper

Transit Bus Operation with a DDC 6V-92TAC Engine Operating on Ignition-Improved Methanol

1990-10-01
902161
The use of methanol as a fuel in transit buses is being demonstrated through the use of diesel engine retrofits and an ignition improver to methanol. This project is aimed at retrofitting the Detroit Diesel Corporation (DDC) 6V-92TAC diesel engine in a GM RTSII bus to operate on methanol. The engine is modified by installing higher compression ratio pistons, higher flowrate mechanical fuel injectors, and a different blower. The bus fuel system is also modified to accommodate the properties of methanol. New fuel lines are installed, and the diesel fuel tank is replaced with two stainless steel tanks. A high-pressure electric fuel pump and a fuel cooler are used to prevent methanol from boiling in the engine. Currently, three buses have been retrofitted. The buses operate at the Southern California Rapid Transit District (SCRTD) in Los Angeles, California.
Technical Paper

Applications of High Performance P/M Aluminum in Internal Combustion Engines

1991-02-01
910156
Powder Metallurgy (P/M) renders the possibilities to tailor material properties using rapid solidification or mechanical alloying processes totally different to the options of ingot metallurgy (I/M). For demanding applications in internal combustion engines new materials have become more important because of environmental and/or performance reasons. Weight reductions to improve the performance or reduce the consumptions and consequently the amount of exhaust gases and increase of temperatures at different locations of an engine need better aluminum materials. P/M solutions are described from the point of view of material's processing and general properties. The potential for automotive pistons is discussed with several examples.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions

1991-02-01
910460
An experimental investigation of the effects of ceramic coatings on diesel engine performance and exhaust emissions was conducted. Tests were carried out over a range of engine speeds at full load for a standard metal piston and two pistons insulated with 0.5 mm and 1.0 mm thick ceramic coatings. The thinner (0.5 mm) ceramic coating resulted in improved performance over the baseline engine, with the gains being especially pronounced with decreasing engine speed. At 1000 rpm, the 0.5 mm ceramic coated piston produced 10% higher thermal efficiency than the metal piston. In contrast, the relatively thicker coating (1 mm), resulted in as much as 6% lower thermal efficiency compared to baseline. On the other hand, the insulated engines consistently presented an attractive picture in terms of their emissions characteristics. Due to the more complete combustion in the insulated configurations, exhaust CO levels were between 30% and 60% lower than baseline levels.
Technical Paper

A Study of Decrease Oil Consumption for NSOR-Two-Ring Package Piston

1991-02-01
910435
Furuhama(1)* proposed the new two ring package consist of a pressure ring and a narrow single-rail oil ring (NSOR) in 1985. Number of studies(2) have been done for the purpose of reducing the oil consumption (OC) in this ring package. However, OC reduction problem has been still remaining to solve as only one serious problem of this ring package. The reasons of a larger OC in the new ring package than the conventional three ring has been hardly understood, considering the OC control ability on second ring in three ring package will not so large since the fact that the oil film thickness is thicker than that of the oil ring. In this study, the mechanism of OC increase in new ring package was found out at last, as a result, OC of new ring package piston was improved up to the same level of conventional three ring package piston.
Technical Paper

Development of Light Weight High Strength Aluminum Alloy Piston with Cooling Gallery Manufactured Using Squeeze Casting Technique

1991-02-01
910434
In recent years, demands for increased output and low fuel consumption in automobile engines have been mounting. Light weight and high performance is demanded of the main operating parts, such as pistons. In response to these demands, the crown thickness and pin boss unit thickness has been reduced by tremendous improvements in the fatigue strength, compared to strength obtained by conventional methods, by utilizing Squeeze Casting techniques. In addition, the thickness of the inside face of the pistons has been reduced by making use of a split core. Furthermore, by manufacturing a cooling gallery, the heat load has been reduced; by introduction of hollow regions, an extremely light weight and compact piston has been developed. Three new techniques are indicated here. Firstly, the technique of attaining soundness in material and excellent fatigue strength by the Squeeze Casting technique, which is superior to those attained by conventional methods.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

1991-02-01
910457
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Technical Paper

Florida lnstitute of Technology - 1990 Methanol Challenge Experience

1991-02-01
910573
The next decade will show a change in all motor fuels used in public transportation. As of this writing, methanol is viewed as one of the most promising of the new “clean air fuels.” Florida Institute of Technology, in competition with 13 other Universities, designed and completed modification on a 1988 Chevrolet Corsica supplied by General Motors. These modifications included high compression ceramic coated pistons in conjunction with turbochargin. Further research included camshaft testing, ignition and fuel curve changes, and a unique 6/3 cylinder cut-out scheme during low engine load conditions. The Corsica was then entered in the 1990 Methanol Challenge.
Technical Paper

The Effect of Piston Temperature on Hydrocarbon Emissions from a Spark-Ignited Direct-Injection Engine

1991-02-01
910558
Light-load unburned hydrocarbon emissions were studied experimentally in a spark-ignited direct-injection engine burning gasoline where the piston temperature was varied. The test engine was a single-cylinder Direct Injection Stratified-Charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System. At a single low load operating condition, the piston temperature was varied by 50 K by controlling the cooling water and oil temperature. The effect of this change on unburned hydrocarbon emissions and heat release profiles was studied. It was found that by carefully controlling the intake air temperature and pressure to maintain constant in-cylinder conditions at the time of injection, the change in piston temperature did not have a significant effect on the unburned hydrocarbon emissions from the engine.
Technical Paper

A Telemetry Linkage System for Piston Temperature Measurements in a Diesel Engine

1991-02-01
910299
A telemetry linkage system has been developed for piston temperature measurements in a direct-injection diesel engine. In parallel with the development of the telemetry linkage system, fast response thermocouples were installed at three piston locations - two on the bowl surface and one on the crown surface. A novel design was used to achieve electrical continuity between the piston and the connecting rod by means of a flexible steel strap pivoted on the piston skirt. The telemetry linkage system was then used to transport the electrical wires from the thermocouples to the external data acquisition system. A series of tests was run to determine the effects of location and load on piston surface temperatures. Surface temperature profiles varied substantially among the three locations, reflecting the differences in the combustion and heat flow characteristics of their surrounding regions.
X