Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Flame Front Speed of a Decane Cloud under Microgravity Conditions

1998-10-19
982566
In this study, a piezo disk was used to generate a cloud of n-decane fuel drops, which were mixed with air, then carried into a combustion chamber and ignited by a platinum wire. Microgravity data obtained at the Japan Microgravity Center (JAMIC) were compared to normal gravity data, all at 1Atm pressure and 20+/-1°C initial temperature. Under normal gravity the lean limit was found to be 7.6x106/mm3 (Φ = 1.0), and from this point the flame front speed steadily increased from 20cm/s up to a maximum flame front speed of 210cm/s at a fuel drop density of about 14x106/mm3 (Φ = 1.85). Microgravity data showed a much richer lean limit - about 14.5x106/mm3 (Φ = 1.9), and the flame front speed did not gradually rise to a peak value. Instead, the measurements indicated a peak value of about 250cm/s, with a steep increase followed by a gradual decrease at richer fuel air ratios. A cellular flame structure appeared, and the cell size decreased as the mixture density increased.
Technical Paper

Investigation of the Combustion Mechanism of a Fuel Droplet Cloud by Numerical Simulation

1998-10-19
982615
The combustion mechanism of a fuel droplet cloud was studied by numerical simulation. We investigated how the flame front speed and combustion products changed depending on the equivalence ratio and initial temperature. Modeling was performed using the KIVA-III software package, a three dimensional analysis software used mainly for internal combustion engine applications. The computational domain was a horizontal 1x1x100 cell sector of a spherical combustion chamber and the fuel was n-decane. Results showed that when all the fuel droplets were assumed to have evaporated, the flame front speed increased from 28 cm/s to 152 cm/s as the equivalence ratio increased. The maximum flame front speed was reached at ϕ=1.1, beyond which it decreased (at richer overall equivalence ratios). With a constant equivalence ratio, the flame front speed decreased near the outside region, because the unburned gas was compressed by the expanding burned gas.
X