Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Recursive Least Square Method with Multiple Forgot Factor for Mass Estimation of Heavy Commercial Vehicle

2024-04-09
2024-01-2762
Heavy commercial vehicles have large variations in load and high centroid positions, so it is particularly important to obtain timely and accurate load information during driving. If the load information can be accurately obtained and the braking force of each axle can be distributed on this basis, the braking performance and safety of the entire vehicle can be improved. Heavy commercial vehicle load information is different from passenger vehicles, so it is particularly important to study commercial vehicles engaged in freight and passenger transportation. Presently, numerous research endeavors focus on evaluating the quality of passenger vehicles. However, heavy commercial vehicles exhibit notable distinctions compared to their passenger counterparts. Due to substantial variations in vehicle mass pre and post-loading, coupled with notable suspension deformations, significant changes are observed.
Technical Paper

Coordinated Control of Trajectory Tracking and Yaw Stability of a Hub-Motor-Driven Vehicle based on Four-Wheel-Steering

2024-04-09
2024-01-2767
In order to improve the trajectory tracking accuracy and yaw stability of vehicles under extreme conditions such as high speed and low adhesion, a coordinated control method of trajectory tracking and yaw stability is proposed based on four-wheel-independent-driving vehicles with four-wheel-steering. The hierarchical structure includes the trajectory tracking control layer, the lateral stability control decision layer, and the four-wheel angle and torque distribution layer. Firstly, the upper layer establishes a three-degree-of-freedom vehicle dynamics model as the controller prediction model, the front wheel steering controller is designed to realize the lateral path tracking based on adaptive model predictive control algorithm and the longitudinal speed controller is designed to realize the longitudinal speed tracking based on PID control algorithm.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

A Fault-Tolerant Control Method for 4WIS/4WID Electric Vehicles Based on Reconfigurable Control Allocation

2018-04-03
2018-01-0560
This paper presents a fault-tolerant control (FTC) method for four-wheel independently driven and steered (4WIS/4WID) electric vehicles based on a reconfigurable control allocation to increase the flexibility for vehicle control and improve the safety of vehicle after the steering actuator fails. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle steering condition, detects and diagnoses actuator failures; 2) an upper controller that computes the generalized forces/moments to track the desired vehicle motion and trajectory; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels. The FTC approach based on the reconfigurable control allocation reallocates the generalized forces/moments among healthy steering actuators and driving motors once the actuator failures is detected.
Technical Paper

Development and Test of Braking Intention Recognition Strategies for Commercial Vehicle

2015-09-29
2015-01-2841
This paper establishes a brake pedal model for braking intention identification, using the structural features of electronic braking system and selecting the proper parameters. A three-dimensional model is built that the input parameters are pedal displacement and pedal displacement change rate, and the output parameter is braking intensity. The relationship between the driver braking operation and braking intention are designed. A hardware-in-the-loop test bench experiment has been taken under several skilled drivers to practice the established the brake pedal model with the operation data during the braking. Thus, it results a model indicating the braking intention by braking operation that means effectively improve the braking comfort and applies to the research of electronic braking system of commercial vehicle.
Technical Paper

Research On Simulation And Control Of Differential Braking Stability Of Tractor Semi-trailer

2015-09-29
2015-01-2842
Heavy vehicles have the characteristics of with high center of gravity position, large weight and volume, wheelbase is too narrow relative to the body height and so on, so that they always prone to rollover. In response to the above heavy security problems of heavy vehicle in running process, this paper mainly analyzes roll stability and yaw stability mechanism of heavy vehicles and studies the influence of vehicle parameters on stability by establishing the vehicle dynamics model. At the same time, this paper focuses on heavy vehicles stability control methods based on simulation and differential braking technology. At last, verify the effect of heavy vehicle stability control by computer simulation. The results shows that self-developed stability control algorithm can control vehicle stability effectively, so that the heavy vehicles instability can be avoided, the vehicle driving safety and braking stability are improved.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

2015-09-29
2015-01-2742
Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Journal Article

Multi-Objective Stability Control Algorithm of Heavy Duty Based on EBS

2014-09-30
2014-01-2382
At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
Technical Paper

A Slip-Rate-Based Braking Force Distribution Algorithm for the Electronic Braking System of Combination Vehicle

2014-09-30
2014-01-2385
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads.
Technical Paper

Study on Automated Mechanical Transmission Parameters Optimization for Hybrid Electric Bus

2014-09-30
2014-01-2371
For city buses, especially hybrid electric buses, the requirements for the fuel economy and low noises are stricter, comparing with the momentum quality. Since hybrid electric buses sometimes run without the engine, the noises that the transmission makes become the major type. To get better fuel economy and lower noises, this paper focuses on optimizing the characteristics of the automatic mechanical transmission (AMT) in a hybrid electric city bus, and the studies are done as follows. Firstly, in order to reduce the fuel consumption, the transmission ratios are optimized by the co-simulation and optimization in CRUISE and MATLAB, with the limitation of the quality of driving momentum. Secondly, for the purpose of lightweight and lower transmission noise, multi-objective optimization based on reliability is applied in transmission geometric optimization design, the objective function are the smallest volume and the biggest transmission gear contact ratio of the transmission.
Technical Paper

Research on an AKF Estimator of the Gravity Centre and States of Commercial Vehicles

2013-11-27
2013-01-2818
The commercial vehicle is widely used in the overland transport. A prediction is given on the 9th annual China automotive industry forum that the number of the global commercial vehicles will reach eight million by the year of 2016. However, since the distance between its gravity centre and the ground is larger than that of the passenger vehicle, considering its comparatively short wheelbase, the rollover accident, which is fatal to the drivers and always makes enormous loss of merchandises, easily occurs in the case of commercial vehicles. As the number of the commercial vehicle is increasing fast, the accidents will occur more frequently, the losses will be increasingly enormous. To solve the problem, many researches about rollover early warning systems have been done. In most cases, it is assumed that the references of the vehicle are given.
X