Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Method for Root Bending Fatigue Life Prediction in Differential Gears and Validation with Hardware Tests

2024-04-09
2024-01-2249
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test.
Technical Paper

System Validation with Battery-in-the-Loop Configuration Using a Virtual Testing Toolchain

2024-01-16
2024-26-0116
Today, the battery development process for automotive applications is relatively decoupled from the vehicle integration and system validation phase. Battery pack design targets are often disregarded at very early development phases even though they are thoroughly linked to the vehicle-level requirements such as performance, lifetime and cost. Here, AVL proposes a methodology guided by virtual testing techniques to frontload vehicle-level validation tasks in the earlier phase of battery pack testing. This paper focuses on the benefits of the methodology for both battery suppliers and automotive OEMs. Applications will be explained, based on a modular virtual testing toolchain, which involves the simulation platform and models as well as the generation of model parameters and test cases.
Technical Paper

Measurement Uncertainty and Its Influence on E-Drive Optimization Applications

2024-01-16
2024-26-0097
This paper gives insights in the theoretical measurement uncertainty of E-Drive rotor position dependent results, like Id and Iq calculations, done by a modern propulsion power analyzer (PA). The calculation of Id and Iqis fundamental to perform control optimization and application tasks for an E-Drive system. To optimize the E-Drive system application towards e.g., best efficiency, best performance, or improved NVH the importance of the testing toolchain is described: a power analyzer delivering the required results, an automation system, and a Design of Experiment tool to set improved target values. Consequently, inverters applications featuring field-oriented control (FOC) with permanent magnet synchronous machines (PMSM) are updated with a chosen control strategy. For achieving a certain behavior of an E-Drive, different degrees of freedom in the Inverter Control Unit are available; Lookup tables Id and Iq represent two fundamental application labels to be considered.
Technical Paper

Thermal Propagation of Li-Ion Batteries: A Simulation Methodology for Enhanced and Accelerated Virtual Development

2022-10-05
2022-28-0101
The safety of BEVs in driving, charging and parking condition is essential for the success of electrification in automotive industry as well as key driver of any future development of Li-Ion HV battery. AVL has developed a unique simulation approach in which the multi-physical behavior of the single cell in thermal runaway is modelled and applied to module, pack or vehicle level. In addition and beside this cell behavior, various more physical phenomena during thermal propagation on pack level are considered and predicted by the simulation method: component melting, ignition and flammibilty of venting gas and HV failures.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

End-Correction in Open Ducts: An Experimental Study

2022-06-15
2022-01-0987
This paper presents the results of an investigation on the influence of a duct’s geometry and shape on its acoustic length, which differs from its physical length by a factor referred to as end-correction. In addition to traditional parameters such as length and diameter, the author has investigated the effect of additional geometry features which are less commonly addressed in the technical literature, such as a diameter contraction or a bent section along the duct. The relative microphone position with respect to the pipe orifice and to the ground surface of the measurement environment has been investigated, showing negligible impact on the measurement results. The sound wave propagation within a pipe featuring a diameter contraction has then been analysed, showing the relationship between the pipe contraction shape and location and the pipe acoustic length.
Technical Paper

Reduction of Testing Time of PTCE/HTOE Tests Based on Real Road Load Profiles

2022-03-29
2022-01-0176
HTOE (High Temperature Operation Endurance) and PTCE (Power Thermal Cycle Endurance) tests are typically performed according automotive group standards, such as LV 124 [1], VW80000 [2], FCA CS.00056 [3] or PSA B21 7130 [4]. The LV 124-2 group standard, composed by representatives of automobile manufacturers like Audi AG, BMW AG, Volkswagen AG and Porsche AG describes a wide range of environmental tests and their requirements. In addition, calculation parameters and a method are given in the standard. These group standard tests are often attributed to IEC 60068-2-2 [5] for HTOE and IEC 60068-2-14 [6] for PTCE. As both of these tests are typically of long duration, fundamentally linked to reliability (therefore requiring a statistically significant number of samples) and of considerable importance to power electronic, they are worthy of additional scrutiny for automotive developers as most automotive development moves towards electrification.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Automated Outlier Detection in Multidimensional Driveability Data Using AVL-DRIVE

2020-12-23
2020-01-5216
With the increased number of variants, the preservation of a brand-specific vehicle DNA becomes more and more important. Paired with growing customer expectations, brand DNA can be a crucial point in the decision-making process of buying a new vehicle. Whereas the customer will assess the DNA subjectively during driving by evaluating the vehicle drive quality (“driveability”), most manufacturers are not merely relying on subjective evaluations by having test drivers perform maneuvers with prototype vehicles. Nowadays, the assessment is performed objectively during the vehicle development process. As a supporting measure, the Anstalt für Verbrennungskraftmaschinen List (AVL) has made the objective assessment tool AVL-DRIVE commercially available. Up to now, the AVL-DRIVE ratings had to be manually analyzed and checked for outliers. Low ratings and high deviations to a priori specified target values are a good starting point for the search of outliers.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

2020-04-14
2020-01-0827
Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
Technical Paper

Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications

2019-04-02
2019-01-0206
In contrast to the well-established “standard” log-law wall function, the analytical wall function (AWF) as an advanced modelling approach has not been extensively used in the industrial computational fluid dynamics (CFD) applications. As the model was originally developed aiming at computations on relatively coarse meshes, potential stability issues may arise due to the pressure-gradient sensitivity if employing locally inappropriate mesh layers, typically associated with the complex geometry details. This work evaluates performance of the thermal AWF, as proposed by Suga [4], in conjunction with the main flow field computed employing the k-ζ-f turbulence model and the hybrid wall treatment (denoted as AWF-e) within the Reynolds-averaged Navier-Stokes (RANS) framework.
Technical Paper

Modular and Swappable 48V Battery Systems for Emerging Markets

2019-01-09
2019-26-0032
Electrification globally shows promise in reducing greenhouse and noxious emissions. Although there is immense potential in such technologies penetrating across vehicle segments in the Indian market, the key lies in offering scalable, cost effective battery solutions suiting the diverse product and customer needs. This paper describes the development and possible applications of a low voltage battery system that fulfills the current needs on the Indian market. Based on real-world driving profiles the energy and power output required for the target platform are determined. Keeping in mind the Indian operating conditions, safety requirements, driving behavior, charging infrastructure, operational costs, supplier network and serviceability, technical requirements for such systems are described. Also, benchmarking data of current battery systems help to optimize the mechanical, thermal, and electrical layouts.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Prediction of the Combustion and Emission Processes in Diesel Engines Based on a Tabulated Chemistry Approach

2017-10-08
2017-01-2200
Turbulent combustion modeling in a RANS or LES context imposes the challenge of closing the chemical reaction rate on the sub-grid level. Such turbulent models have as their two main ingredients sources from chemical reactions and turbulence-chemistry interaction. The various combustion models then differ mainly by how the chemistry is calculated (level of detail, canonical flame model) and on the other hand how turbulence is assumed to affect the reaction rate on the sub-grid level (TCI - turbulence-chemistry interaction). In this work, an advanced combustion model based on tabulated chemistry is applied for 3D CFD (computational fluid dynamics) modeling of Diesel engine cases. The combustion model is based on the FGM (Flamelet Generated Manifold) chemistry reduction technique. The underlying chemistry tabulation process uses auto-ignition trajectories of homogeneous fuel/air mixtures, which are computed with detailed chemical reaction mechanisms.
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
X