Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of an Object Oriented Vehicle Library for Automated Design Analysis

2001-09-11
2001-01-3034
In today’s emerging parametric and probabilistic design environments, disciplinary or multidisciplinary analysis data are represented efficiently with the use of metamodels. Each metamodel is an efficient replacement for a particular design analysis tool. An object oriented library is developed in this paper to represent vehicle configuration in a generic manner and assist the analysis data collection for the metamodeling process. The library is used to produce input files for design analysis tools. It can also be used to create preprocessors for integration environments used in the design process. This allows for smoother integrations of analysis programs within such environments as the environment now needs only replace data in one central input file rather than a file for each analysis tool.
Technical Paper

Implementation of Parametric Anaylsis to the Aerodynamic Design of a Hypersonic Strike Fighter

2000-10-10
2000-01-5561
A Hypersonic Strike Fighter (HSF) would provide many benefits over current fighters, including increased effectiveness and survivability. However, there are many design challenges to developing such a vehicle. Therefore the conceptual design of an HSF requires the development of new tools and methods to analyze and select vehicle concepts. A parametric method was developed to determine aerodynamic characteristics of hypersonic vehicles in a rapid, automated way. This parametric method and other tools were then used to select a baseline design and optimize this baseline for the notional mission.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

2000-10-10
2000-01-5559
The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
X