Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Model-Based Development Design for a Continuously Variable Discharge Oil Pump Design

2019-04-02
2019-01-0764
Recently, for protection of the environment, the regulation of automobile fuel consumption and exhaust gas emission has been strengthened. In light of such circumstances, automobile parts are generally required to be able to improve fuel efficiency and reduce exhaust gas emission. In order to meet such requirements, the structure of fuel/exhaust-related devices has become complicated. Redesigns of future products that will be increasingly complex will lengthen the development period and reduce cost efficiency seriously.
Technical Paper

Development of Continuously Variable Discharge Oil Pump

2018-04-03
2018-01-0932
Recently, for the protection of the environment, the regulation of automobile fuel consumption and exhaust gas emission has been strengthened. To improve fuel economy, it is demanded that each engine part contributes to reducing the workload of the engine, even the engine lubrication oil pump. In response to this, a new variable discharge oil pump was developed. It is the world's first internal gear type oil pump that has electronically controlled continuously variable discharge. The work performed by the pump chiefly takes two forms: sliding friction of the rotor and pumping work which moves the oil. First, in developing a variable discharge oil pump, a new tooth profile of the rotor was developed to reduce its sliding friction. As a result, the sliding friction of the rotor was reduced by 34% while maintaining the same theoretical oil discharge rate. Next, a variable discharge mechanism using an internal gear was developed.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

A Basic Study of a Driver's Gaze Area Detection System

2017-03-28
2017-01-0030
With the improved safety performance of vehicles, the number of accidents has been decreasing. However, accidents due to driver distraction still occur, which means that there is a high need to determine whether a driver is properly looking at the surroundings. Meanwhile, with the trend toward partial automatic driving of vehicles in recent years, it is also urgently required that the state of the driver be grasped. Even if automatic driving is not installed, it is desired that the state of the driver be grasped and an application for control be performed depending on the state of the driver. Under these circumstances, we have built an algorithm that determines of the direction a driver is looking, to make a basic determination of whether or not the driver is in a state suitable for safe driving of the vehicle.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

Biomechanical and Scaling Basis for Frontal and Side Impact Injury Assessment Reference Values

2016-11-07
2016-22-0018
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
Journal Article

CVJ and Knuckle Design Optimization to Protect Inboard Wheel Bearing Seals from Splash

2016-09-18
2016-01-1956
For higher mileage vehicles, noise from contaminant ingress is one of the largest durability issues for wheel bearings. The mileage that wheel bearing sealing issues increase can vary due to multiple factors, such as the level of corrosion for the vehicle and the mating components around the wheel bearing. In general, sealing issues increase after 20,000 to 30,000 km. Protecting the seals from splash is a key step in extending bearing life. Benchmarking has shown a variety of different brake corner designs to protect the bearing from splash. This report examines the effect of factors from different designs, such as the radial gap between constant velocity joint (CVJ) slinger and the knuckle, knuckle labyrinth height and varying slinger designs to minimize the amount of splash to the bearing inboard seal. This report reviews some of the bearing seal failure modes caused by splash.
Technical Paper

Disc Brake Pad Corrosion Adhesion: Test-to-Field Issue Correlation, and Exploration of Friction Physical Properties Influence to Adhesion Break-Away Force

2016-09-18
2016-01-1926
Brake pad to rotor adhesion following exposure to corrosive environments, commonly referred to as “stiction”, continues to present braking engineers with challenges in predicting issues in early phases of development and in resolution once the condition has been identified. The goal of this study took on two parts - first to explore trends in field stiction data and how testing methods can be adapted to better replicate the vehicle issue at the component level, and second to explore the impacts of various brake pad physical properties variation on stiction propensity via a controlled design of experiments. Part one will involve comparison of various production hardware configurations on component level stiction tests with different levels of prior braking experience to evaluate conditioning effects on stiction breakaway force.
Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Technical Paper

Technology to Balance Discharge Pressure Characteristics with Hydraulic Vibration Control for a Variable Discharge Oil Pump

2016-04-05
2016-01-1348
1 There are two design challenges of the flow path switching valve in a three-stage variable discharge oil pump. The first is to obtain the required discharge pressure characteristics and the other is to prevent hydraulic vibration. Therefore, we established technologies to determine the shape of the valve and the valve housing that resolve these two challenges. The technology to obtain the required discharge pressure characteristics solves equations that are statically true, such as the equations for the equilibrium of forces and hydraulic orifice. The hydraulic vibration control technology derives a differential equation that takes transient behavior, including oil elasticity and inertia, into account first. Then, the derived equations are converted to a transfer function that indicates the valve behavior according to the input of oil pressure changes. And then the stability criterion is applied to judge whether hydraulic vibration occurs or not.
Technical Paper

Development of Hybrid Powertrain System for Small Vehicles

2016-04-05
2016-01-1171
Electrification of the powertrain to improve vehicle fuel economy is a key technology to achieve strict fuel economy legislation. However, only limited numbers of small class vehicles such as a B segment adopt electric powertrain. This is presumed that cost effectiveness for fuel economy is small and mounting space for additional powertrain is limited. In this paper, the optimum solution of a strong hybrid system suitable for the small vehicles was studied. First, from the viewpoint of maximization of energy efficiency, we compared contributions of engine efficiency and transmission efficiency during mode cycle driving and selected automated manual transmission as a suitable transmission for small vehicles. In comparing the hybrid system function, we determined a motor generator connecting shaft and a necessary motor generator output power for attaining both fuel economy and drivability.
Technical Paper

Development of the Synchronizer-Less System for HV-AMT

2016-04-05
2016-01-1172
Recently, for the aspects of ecology and economy, fuel efficiency improvement demand has been increased globally. And, various types of hybrid systems have been suggested. In response to this market demand, AISIN SEIKI has been developing Synchronizer-less hybrid automated manual transmission (HV-AMT) system aiming excellent transmission efficiency, excellent agility, and shift change quality like a step automatic transmission (AT). This hybrid system is constructed based upon a parallel 2-axis manual transmission (MT) which originally has high transmission efficiency. The synchronizer system of a MT is replaced by a Dog clutch system which does not spoil the transmission efficiency and never makes failure in synchronization. This Dog clutch system includes a modified detent function, a shift actuator of linear motor, advanced function controls for a clutch and a shift actuator.
Technical Paper

Burrless Surface Processing Technology

2016-04-05
2016-01-1074
Although burr removal after machining generates no value, it is a factor to add major processing cost. While our final goal is to remove the deburring process, development of minimizing the variance in the amount and type of burr after machining was promoted this time as our first step. This report presents how we reduced deburring time significantly by minimizing burr as much as possible from optimization of a blade release angle and development of a relevant tool.
Technical Paper

Pedestrian Space Mobility and Safety Technology

2016-04-05
2016-01-0162
Our society is faced with the serious problems such as aging population growth, environmental pollution and limited energy resource issues. As a means to address these issues, we are developing new mobility vehicles designed to support short-distance trips in urban settings. These mobility vehicles are intended for use in pedestrian areas inside buildings as well as outside, including public roads. In order to ensure safe and convenient operation for both pedestrians and mobility users, we conducted a risk assessment of mobility vehicles in pedestrian areas, and then developed a feature to autonomously limit the speed according to their surrounding conditions. This report discusses the utility of these mobility vehicles with the safety functions based on the fully conducted risk assessment, collision test and performance evaluation in public roads.
Technical Paper

Control for a Comfortable Ride in Reverse Driving with an Automated Parking System

2016-04-05
2016-01-0122
In a system with which acceleration and braking by the driver are automated, a gap against the system can be felt when the timing of acceleration or deceleration is different from that intended by the driver or the extent of acceleration or deceleration exceeds an acceptable limit. For an automated system, it is important to realize a control that provides comfort and a sense of security for the driver. This paper is related to the technology that secures the ride comfort felt by the driver (comfort and a sense of security) within an appropriate range and presents a discussion of the technological means to improve the ride comfort from a viewpoint particularly related to longitudinal direction.
Technical Paper

Development of Compact Electric Rear-Drive Unit

2016-04-05
2016-01-1104
We have developed an electric rear-drive unit to enable all-wheel drive (AWD) applications to the compact FF hybrid passenger vehicles. The development is intended to provide a compact and low cost unit with low fuel consumption. The unit newly introduces a two-axis gear train that enables a compact design, an induction motor and an ATF (automatic transmission fluid) stirring resistance restraining structure that contribute to lower fuel consumption. This paper presents the features and performance of the electric rear-drive unit.
Journal Article

Development of the All-Surface Plated Smart Handle Through In-Vapor Deposition Technology

2016-04-05
2016-01-0543
There are such outside door handles called smart handles which have a transmitting antenna, a lock/unlock sensor, and a sensor detection circuit, with which operation of door lock is possible just by "touching" the electrostatic-capacitance type sensor of the handles.As the design of the outside handles, body color painting and Cr plating are adopted. However, if plating is applied over the entire surface of a smart handle, electromagnetic waves transmitted from the antenna will be blocked since plating material is electrically conductive. In addition to this, touching a part other than the sensor may change the electrostatic-capacitance of the sensor, which results in unwanted functioning of the lock/unlock sensor. Because of this, only part of the handle, which does not hinder the transmission of electromagnetic waves and does not cause unwanted functioning, is covered by plating, that is called, "Partially plated specifications" (Figure 1).
Technical Paper

Cabin Air Humidity Model and its Application

2015-04-14
2015-01-0369
In addition to the thermal comfort of the vehicle occupants, their safety by ensuring adequate visibility is an objective of the automotive climate control system. An integrated dew point and glass temperature sensor is widely used among several other technologies to detect risk of fog formation on the cabin side (or inner) surface of the windshield. The erroneous information from a sensor such as the measurement lag can cause imperfect visibility due to the delayed response of the climate control system. Also the high value, low cost vehicles may not have this sensor due to its high cost. A differential equation based model of the cabin air humidity is proposed to calculate in real-time specific humidity of the passenger compartment air. The specific humidity is used along with the windshield surface temperature to determine relative humidity of air and therefore, the risk of fog formation on the interior surface of a windshield.
X