Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

High Capacity Electric A/C Compressor with Integrated Inverter for Hybrid Automotive and Commercial Vehicles

2008-10-07
2008-01-2619
The market growth for electric-hybrid passenger vehicles has been very significant and is expected to reach nearly 25% of all vehicles sold in the US by 2015. Hybrid commercial vehicles are also being developed by several OEM's. This paper discusses the progress of Delphi Thermal Systems in developing an integrated electric compressor drive with high cooling capacity (9 kW+), sufficient for large hybrid SUV's and commercial vehicles such as Class 8 tractors with sleeper. An important driver for use of the electric compressor in the hybrid truck application is the reduction of engine idling time while maintaining comfort in the cab or sleeper. Design details of a compact 5 kW SPM motor, its inverter drive, and issues related to its integration into the compressor housing are described. Test results are given confirming excellent performance.
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

Motor Vehicle Fire Investigation

2008-04-14
2008-01-0555
The National Fire Protection Association (NFPA) publishes NFPA 921, “Guide for Fire and Explosion Investigations” (1) on generally a three to four year cycle. This guide includes a chapter on the investigation of motor vehicle fires. For the new 2008 edition of this publication the SAE and the NFPA worked closely together in the revision of this chapter. This paper provides a broad overview of the revised chapter and summarizes the major revisions. By using SAE participation in the chapter revision, engineers familiar with or even directly involved in the design of the vehicle systems discussed, helped to develop many of the system descriptions included in the revised chapter. The revised Motor Vehicle chapter like the parent document is both a consensus document and an effective guide which provides origin and cause analysis of motor vehicle fires, an investigative process consistent with principles stated throughout NFPA 921 and adherence to scientific methods.
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

Brake-by-Wire, Motivation and Engineering - GM Sequel

2006-10-08
2006-01-3194
Achieving optimum results and developing systems that are towards production intent is a challenge that the General Motors Sequel platform not only overcame, but also enhanced by providing an opportunity to achieve maximum integration of new technologies. Implementation of these new technologies during this project enabled us to understand the impact and rollout for future production programs to enhance performance and add features that will enable General Motors to make quantum leaps in the automotive industry. Presented are aspects, objectives and features of the Sequel's advanced Brake-By-Wire system as it migrates from concept towards production readiness. Also included in the paper are the objectives for system design; functional/performance requirements and the desired fault tolerance. The system design, component layout, control and electrical system architecture overviews are provided.
Technical Paper

Development of the Hybrid System for the Saturn VUE Hybrid

2006-04-03
2006-01-1502
The hybrid system for the 2007 Model Year Saturn VUE Green Line Hybrid SUV was designed to provide the fuel economy of a compact sedan, while delivering improved acceleration performance over the base vehicle, and maintaining full vehicle utility. Key elements of the hybrid powertrain are a 2.4L DOHC engine with dual cam-phasers, a modified 4-speed automatic transmission, an electric motor-generator connected to the crankshaft through a bi-directional belt-drive system, power electronics to control the motor-generator, and a NiMH battery pack. The VUE's hybrid functionality includes: engine stop-start, regenerative braking, intelligent charge control of the hybrid battery, electric power assist, and electrically motored creep. Methods of improving urban and highway fuel economy via optimal use of the hybrid motor and battery, engine and transmission hardware and controls modifications, and vehicle enhancements, are discussed.
Technical Paper

A Simulation Model for the Saturn VUE Green Line Hybrid Vehicle

2006-04-03
2006-01-0441
In developing the 2007 Model Year Saturn VUE Green Line hybrid vehicle, a vehicle model for prediction of fuel economy and performance was developed. This model was developed in Matlab / Simulink / Stateflow by augmenting an existing conventional vehicle model to include hybrid components and controls. The generic structure and the functionalities of the model are presented. This simulation model was used for rapid concept selection and requirements balancing early in the vehicle development process. Engine usage and energy distributions are shown based on simulation results. Fuel economy breakdown was also discussed.
Technical Paper

Simulation of Vehicle Exterior Sound Fields by High Frequency Boundary Element Method

2005-05-16
2005-01-2328
With Statistical Energy Analysis (SEA) proven to be a powerful tool for airborne noise analysis, the capability of predicting the exterior sound field around a vehicle at high frequencies (the load case in the SEA analysis) is of particular interest to OEMs and suppliers. This paper employs the High Frequency Boundary Element Method (HFBEM) to simulate the scattered exterior sound field distribution due to a monopole source. It is shown that the proposed method is able to efficiently predict the spatial and frequency averaged sound pressure levels reasonably well up to 10 kHz, even at points in the near field of the vehicle body.
Technical Paper

An Integrated Chassis Control for Vehicle-Trailer Stability and Handling Performance

2004-05-04
2004-01-2046
To cope with the conflict requirements between the stability and handling performance, and the high-order and complex vehicle-trailer plant, a model tracking method is proposed. With this approach, a feedback control is designed to “decouple” the vehicle and the trailer plant, such that each tracks a well-defined second-order reference model independently yet coordinately. A feedforward control is designed to maintain its system steady-state performance. As a result, the proposed approach not only improves the system transient responses, but also its steady-state performance. This approach further yields a simple yet analytical control derivation that provides more insight to the system dynamics.
Technical Paper

The Steering Characterizing Functions (SCFs) and Their Use in Steering System Specification, Simulation, and Synthesis

2001-03-05
2001-01-1353
A set of functions for characterizing the mechanical properties of a steering “short gear” is described. They cover the kinematic, stiffness, assist, and friction performance of a power assisted (or manual) steering gear from the input shaft to the inner ends of the tie rods. Their use in describing the performance of a generalized steering gear is described. They have particular application to describing the steering feel performance of a vehicle. They can be used to specify the steering subsystem performance for desired steering feel for a given vehicle. They can also be used for experimental characterization of steering subsystems, can be used in vehicle dynamics simulations, and can be synthesized from a set of vehicle level performance targets. Along with their description, their use in simulation and methods to synthesize their values are described.
Technical Paper

Architecture for Robust Efficiency:GM's “Precept” PNGV Vehicle

2000-04-02
2000-01-1582
General Motors is developing a hybrid electric concept vehicle from its “Precept” high efficiency vehicle architecture, to satisfy requirements of the Partnership for a New Generation of Vehicles (PNGV) program. This Technology Demonstration Vehicle (TDV) features fundamental architecture that is unconventional compared to contemporary passenger car design, or even to other hybrid vehicles. This paper describes this unique architecture and how the vehicle's most significant features complement each other in harmonious design. It also notes how these features contribute to robustness of efficiency.
Technical Paper

Rationale for Technology Selections in GM's PNGV Precept Concept Car Based on Systems Analysis

2000-04-02
2000-01-1567
The CY2000 cornerstone goal of the Partnership for a New Generation of Vehicles (PNGV) is the demonstration in CY 2000 of a 5-passenger vehicle with fuel economy of up 80 mpg (3 l/100km). As a PNGV partner, GM will demonstrate a technology-demonstration concept vehicle, the Precept, having a lightweight aluminum-intensive body, hybrid-electric propulsion system and a portfolio of efficient vehicle technologies. This paper describes: 1) the strategy for the vehicle design including mass requirements, 2) the selection of dual axle application of regenerative braking and electric traction, and 3) the complementary perspective on energy management strategy. This paper outlines information developed through systems analysis that drove technology selections. The systems analyses relied on vehicle simulation models to estimate fuel economy associated with technology selections. Modeling analyses included consideration of both federal test requirements and more severe driving situations.
Technical Paper

Driver Understanding and Recognition of Automotive ISO Symbols

1988-02-01
880056
This study assesses the understanding and recognition, by U.S. drivers, of the 25 automotive ISO symbols specified in SAE Standard J1048. A two-part survey was administered to 505 volunteers at a Secretary of State's office located in a Detroit suburb. Percentage results for symbol understanding indicated low levels of understanding for many symbols; percentage results for symbol recognition were generally much higher for all symbols. The effects of gender, age, and education level on the percentage results are summarized.
Technical Paper

DEVELOPMENT OF THE BRAKE SYSTEM FOR THE GENERAL MOTORS EXPERIMENTAL SAFETY VEHICLE

1973-02-01
730081
The Experimental Safety Vehicle program in General Motors was a study in meeting the Department of Transportation performance requirements, with the sole objective being to meet or exceed all of the contract specifications. This vehicle was not intended for production; it was a safety idea car with many unique features including a four-wheel, anti-lock disc brake system using a hydraulic power brake system with an electro-hydraulic back-up system. In addition, the design of the dual piston caliper for the disc brakes provides a redundant system thereby minimizing the effect of a single line or hose failure. This feature coupled with the redundant back-up power brake system provided performance under various failed conditions approximately equal to the original effectiveness with only a slight increase in pedal effort. This brake system, developed for the ESV, satisfied the General Motors performance objectives, and equaled or surpassed the contract requirements of the ESV program.
X