Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Advanced Aluminum and Aluminum-Lithium Solutions for Derivative and Next Generation Aerospace Structures

2012-09-10
2012-01-1874
The challenging performance and affordability goals of next generation aircraft have accelerated the demand for advanced structural materials and concepts capable of achieving significant weight and cost (acquisition and operational) reduction. To meet these aggressive weight and structural maintenance reduction targets, future aircraft will require structural solutions that provide increased strength, damage tolerance and corrosion resistance. Alcoa has developed advanced aluminum alloys and third generation aluminum-lithium (Al-Li) alloys with exceptional performance and durability capability. This presentation first introduces the basic properties of the new 2xxx and 7xxx series aerospace aluminum and third generation Al-Li alloys possessing improved strength, fatigue life, crack propagation, fracture toughness, corrosion resistance, and, in the case of Al-Li alloys, reduced density and increased modulus.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Expanding the Application of Magnesium Components in the Automotive Industry: A Strategic Vision

2007-04-16
2007-01-1033
There is an increasing global realization about the need for fuel efficient vehicles. An inexpensive way to accomplish this is through mass reduction, and one of the most effective ways that this can occur is through substituting current materials with magnesium, the lightest structural metal. This document describes the results of a U.S. Automotive Materials Partnership (USAMP) sponsored study [1] that examines why magnesium use has only grown 10% per year and identifies how to promote more widespread commercial applications beyond the 5-6 kg of component currently in vehicles. The issues and concerns which have limited magnesium use are discussed via a series of research and development themes. These address concerns associated with corrosion, fastening, and minimal metalworking/non-traditional casting processing. The automotive and magnesium supplier industries have only a limited ability to develop implementation-ready magnesium components.
Technical Paper

High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications

2006-04-03
2006-01-0605
Durability requirements for exhaust materials have resulted in the increased use of stainless steels throughout the exhaust system. The conversion of carbon steel exhaust flanges to stainless steel has occurred on many vehicles. Ferritic stainless steels are commonly used for exhaust flanges. Flange construction methods include stamped sheet steel, thick plate flanges and powder metal designs. Flange material selection criteria may include strength, oxidation resistance, weldability and cold temperature impact resistance. Flange geometry considerations include desired stiffness criteria, flange rotation, gasket/sealing technique and vehicle packaging. Both the material selection and flange geometry are considered in terms of meeting the desired durability and cost. The cyclic oxidation performance of the material is a key consideration when selecting flange materials.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2005-04-11
2005-01-0542
A co-operative program initiated by the Automotive Aluminum Alliance and supported by USAMP continues to pursue the goal of establishing an in-laboratory cosmetic corrosion test for finished aluminum auto body panels that provides a good correlation with in-service performance. The program is organized as a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee. Initially a large reservoir of test materials was established to provide a well-defined and consistent specimen supply for comparing test results. A series of laboratory procedures have been conducted on triplicate samples at separate labs in order to evaluate the reproducibility of the various lab tests. Exposures at OEM test tracks have also been conducted and results of the proving ground tests have been compared to the results in the laboratory tests. Outdoor tests and on-vehicle tests are also in progress. An optical imaging technique is being utilized for evaluation of the corrosion.
Technical Paper

Correlation between Accelerated Laboratory Tests and Field Tests for Filiform Corrosion of Painted Aluminum Alloy Sheets for Automobiles

2003-10-27
2003-01-2749
Correlation between accelerated laboratory tests and field tests for filiform corrosion of painted aluminum alloy sheets for automobile was investigated by conducting six kinds of laboratory tests with different pH, dry-wet condition, etc., and two sites of outdoor exposure tests, and vehicle test. It was found that susceptibility to filiform corrosion in the laboratory tests increased with the decrease of pH and/or the increase of repetition rate of wet/dry cycle. The susceptibility in the laboratory tests also increased with the increase of Cu contents in the alloy or with the sanding treatment before painting. The same tendency was obtained in the outdoor exposure tests and vehicle test. However, the correlation of the outdoor exposure tests and the vehicle test was low. In conclusion, the laboratory tests with relatively low wet ratio (70%) correlated well with the outdoor exposure tests, and the tests with relatively high wet ratio (95%) correlated well the vehicle tests.
Technical Paper

Development of an Improved Cosmetic Corrosion Test By the Automotive and Aluminum Industries for Finished Aluminum Autobody Panels

2003-03-03
2003-01-1235
The Automotive Aluminum Alliance in conjunction with SAE ACAP founded a corrosion task group in 2000 with a goal to establish an in-laboratory cosmetic corrosion test for finished aluminum auto body panels, which provides a good correlation with in-service performance. Development of this test involves a number of key steps that include: (1) Establishing a reservoir of standard test materials to provide a well-defined and consistent frame of reference for comparing test results; (2) Defining a real-world performance for the reference materials through on-vehicle tests conducted in the U.S. and Canada; (3) Evaluating existing laboratory, proving ground, and outdoor tests; (4) Conducting statistically designed experiments to evaluate the effects of cyclic-test variables; (5) Comparing corrosion mechanisms of laboratory and on-vehicle tests; and (6) Conducting a round robin test program to determine the precision of the new test. Several of these key steps have been accomplished.
Technical Paper

Corrosion Testing of 42-Volt Electrical Components

2003-03-03
2003-01-0308
As automobile power needs increase 42-volt electrical systems are being proposed for use in consumer vehicles. One concern when using these new systems is the corrosion resistance of these components, especially in underhood environments. Corrosion is an electrochemical phenomenon and as such can be altered (increased or decreased) by the application of an external current or voltage. Although unintentional, the use of a higher voltage electrical system has the ability to increase corrosion through its normal use. This program evaluated the impact of corrosion on electrical components powered by 14 and 42-volt DC systems. Accelerated corrosion test findings suggested that 42-volt systems may be more susceptible to corrosion, but without proper environmental shielding both supply system can have unacceptable degradation.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
X