Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Two-Phase Fluid Pump for Use in Microgravity Environments

1999-07-12
1999-01-1979
The two-phase pump assembly (TPPA) supports advanced thermal control systems (TCS) being developed for future orbital and deep space missions that continuously demand technological advancements to reduce cost, schedule, size, and weight. The TCS provides cooling to onboard personnel and systems by utilizing a coolant in which the working fluid undergoes vaporization and condensation while circulating in the coolant fluid loop. The considerable latent heat associated with these liquid-vapor phase transitions allows the working fluid to absorb and transport a given amount of heat energy with a significantly reduced coolant flow rate resulting in a smaller system size, volume, and mass. Properly designed heat exchangers which utilize boiling and condensation phase transitions can be made smaller and lighter than single-phase systems for a given heat dissipation load.
Technical Paper

The Continuing Evolution of the C-130 Environmental Control System

1999-07-12
1999-01-2163
The vast array of C-130 applications demand a variety of air conditioning solutions to meet the specific needs of each variant and its user. Existing C-130′s are often reconfigured for special use such as airborne early warning and control (AEW&C), electronic surveillance, or armed reconnaissance, or just upgraded to current flight standards where new equipment is added to the aircraft that significantly increases the heat load on the air conditioning system. These factors dictate the need for high-, middle-, and low-end solutions to deliver the increased cooling capacity required at a price each user can afford. This paper will recap the evolution of the C-130 environmental control system (ECS) to date, summarize current improvement efforts, and suggest future ECS developments.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

1997-07-01
972550
Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Investigation of Mars In-Situ Propellant Production

1997-07-01
972496
In-situ production of oxygen and methane for utilization as a return propellant from Mars for both sample-return and manned missions is currently being developed by NASA in cooperation with major aerospace companies. Various technologies are being evaluated using computer modeling and analysis at the system level. An integrated system that processes the carbon dioxide in the Mars atmosphere to produce liquid propellants has been analyzed. The system is based on the Sabatier reaction that utilizes carbon dioxide and hydrogen to produce methane and water. The water is then electrolyzed to produce hydrogen and oxygen. While the hydrogen is recycled, the propellant gases are liquefied and stored for later use. The process model considers the surface conditions on Mars (temperature, pressure, composition), energy usage, and thermal integration effects on the overall system weight and size. Current mission scenarios require a system that will produce 0.7 kg of propellant a day for 500 days.
Technical Paper

A Thermal Control System Dual-Membrane Gas Trap for the International Space Station

1997-07-01
972410
The dual membrane gas trap filter is utilized in the internal thermal control system (ITCS) as part of the pump package assembly to remove non-condensed gases from the ITCS coolant. This improves pump performance and prevents pump cavitation. The gas trap also provides the capability to vent air that is Ingested into the ITCS during routine maintenance and replacement of the International Space Station (ISS) system orbital replacement units. The gas trap is composed of two types of membranes that are formed into a cylindrical module and then encased within a titanium housing. The non-condensed gas that is captured is then allowed to escape through a vent tube in the gas trap housing.
Technical Paper

Columbus Orbital Facility Condensing Heat Exchanger and Filter Assembly

1997-07-01
972409
Space environmental control systems must control cabin temperature and humidity. This can be achieved by transferring the heat load to a circulating coolant, condensing the humidity, and separating the condensate from the air stream. In addition, environmental control systems may be required to remove particulate matter from the air stream. An assembly comprised of a filter, a condensing heat exchanger, a thermal control valve, and a liquid carryover sensor, is used to achieve all these requirements. A condensing heat exchanger and filter assembly (CHXFA) is being developed and manufactured by SECAN/AlliedSignal under a contract from Dornier Daimler-Benz as part of a European Space Agency program. The CHXFA is part of the environmental control system of the Columbus Orbital Facility (COF), the European laboratory module of the International Space Station (ISS).
Technical Paper

Advancements in Regenerative Life Support Waste Water Bioprocessing Technology

1996-07-01
961572
Bioreactor technology for waste water reclamation in a regenerative life support system (RLSS) is currently being developed by a team of NASA and major aerospace companies. To advance this technology, several activities are being performed concurrently; these include conducting small-scale studies and developing computer models. Small-scale studies are being performed to characterize and enhance the bioprocesses occurring within the bioreactor. New bioreactor configurations have been investigated which improved total organic carbon degradation as well as nitrification, the polishing step which converts nitrogenous wastes into forms that are easily removable from the water. Small-scale studies have also been performed using an activated sludge reactor demonstrating that TOC reduction and nitrification can occur in a single reactor. Computer models have been developed to guide the laboratory studies and to assist in full-scale system design.
Technical Paper

Development of a Regenerable Metal Oxide CO2 Absorber for EMU Applications

1996-07-01
961483
A regenerable metal oxide CO2 absorber is being developed for future Extravehicular Mobility Unit (EMU) applications. It was designed to fit the existing shuttle EMU without modification of the interfaces. Absorption and regeneration tests were performed with subscale and full-size laboratory absorbers. Data is presented for open and closed loop absorber tests that evaluate the effects of residence time, mass velocity, and internal temperature on performance, with emphasis is on the full-size test unit. Regeneration testing quantified the effects of temperature and air flow rate on desorption rate, and of various absorber cooling modes. Its objective was to optimize conditions for minimum peak power and minimum total energy consumption.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

Computer Modeling and Experimental Investigations of a Regenerative Life Support Waste Water Bioreactor

1995-07-01
951463
Computer models are currently being developed by NASA and major aerospace companies to characterize regenerative life support waste water reclamation bioreactors. Detailed models increase understanding of complex processes within the bioreactors and predict performance capabilities over a wide range of operating parameters. Bench-top scale bioreactors are contributing to the development and validation of these models. The purpose of the detailed bioreactor model is to simulate the complex water purification processes as accurately as possible by minimizing the use of simplifying assumptions and empirical relationships. Fundamental equations of mass transport and microbial kinetics were implemented in a finite-difference model structure to maximize accuracy and adaptability to various bioreactor configurations. The model development is based upon concepts and data from the available literature and data from the bench top bioreactor investigations.
Technical Paper

Advances in Development of Bioreactor Technology for a Regenerative Life Support Primary Water Processor

1995-07-01
951740
Bioreactor technology is currently being developed by a team of NASA and major aerospace companies to provide capabilities for water reclamation within a Regenerative Life Support System (RLSS). An integrated approach is being used for this development process consisting of fundamental laboratory studies, full-scale experimental studies and mathematical modeling. The laboratory studies are focused on a series of identical bioreactors which are being used to develop an understanding of the kinetics, growth characteristics, and viability of the microbial population in the reactors through variation of key parameters. These studies have provided insight into system control issues, development of advanced reactor design concepts, and establishment of key parameter values for the mathematical modeling effort. The full-scale experimental studies are being used to develop a complete water reclamation system founded on a biologically-based primary water processor.
Technical Paper

Periodic 10 K Metal Hydride Sorption Cryocooler System

1994-06-01
941621
A program is being performed to design, fabricate, and test a metal hydride sorption cryocooler system capable of supplying periodic refrigeration at 10 K. The system is intended to cool a focal plane array for a low-earth orbit satellite. The refrigeration is effected by sublimating solid hydrogen at 10 K. The solid hydrogen is produced in a batch process by cooling, solidifying, and subcooling liquid hydrogen formed at 30 K by a Joule-Thomson expansion. The spent hydrogen from the sublimation and Joule-Thomson expansion is absorbed by two metal hydride sorption bed assemblies.
X