Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels

2017-11-05
2017-32-0070
The development of future internal combustion engines and fuels is influenced by decreasing energy resources, restriction of emission legislation and increasing environmental awareness of humanity itself. Alternative renewable fuels have, in dependency on their physical and chemical properties, on the production process and on the raw material, the potential to contribute a better well-to-wheel-CO2-emission-balance in automotive and nonautomotive applications. The focus of this research is the usage of alcohol fuels, like ethanol and 2-butanol, in motorcycle high power engines. The different propulsion systems and operation scenarios of motorcycle applications in comparison to automobile applications raise the need for specific research in this area.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
X