Refine Your Search

Topic

Search Results

Technical Paper

Observer Design for Fuel Reforming in HCCI Engines Using a UEGO Sensor

2009-04-20
2009-01-1132
Homogeneous Charge Compression Ignition (HCCI) combustion shows a high potential of reducing both fuel consumption and exhaust gas emissions. Many works have been devoted to extend the HCCI operation range in order to maximize its fuel economy benefit. Among them, fuel injection strategies that use fuel reforming to increase the cylinder charge temperature to facilitate HCCI combustion at low engine loads have been proposed. However, to estimate and control an optimal amount of fuel reforming in the cylinder of an HCCI engine proves to be challenging because the fuel reforming process depends on many engine variables. It is conceivable that the amount of fuel reforming can be estimated since it correlates with the combustion phasing which in turn can be measured using a cylinder pressure sensor.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Advanced Simulation Technology Using LS-DYNA® for Automotive Body Manufacturing Process: From Stamping To Assembly

2009-04-20
2009-01-0983
In automotive body manufacturing, there are two processes are often applied, Nominal Build and Functional Build. The Nominal Build process requires all individual stamping components meet their nominal dimensions with specified tolerances. While, the Functional Build process emphasizes more on the tolerances of the entire assembly as opposed to those of the individual stamped parts. The common goal of both processes is to build the body assemblies that meet the specified tolerances. Although there is strict tolerance specified for individual stamping parts the finished stampings frequently are released to assembly process with certain levels of dimensioning deviations, or they are within the specified tolerances but require heavy clamping during assembly. It is of high interest to predict the dimensional deviations in the stamping sub-assembly or body-in-white assembly process.
Technical Paper

Volume Morphing to Compensate Stamping Springback

2009-04-20
2009-01-0982
A common occurrence in computer aided design is the need to make changes to an existing CAD model to compensate for shape changes which occur during a manufacturing process. For instance, finite element analysis of die forming or die tryout results may indicate that a stamped panel springs back after the press line operation so that the final shape is different from nominal shape. Springback may be corrected by redesigning the die face so that the stamped panel springs back to the nominal shape. When done manually, this redesign process is often time consuming and expensive. This article presents a computer program, FESHAPE, that reshapes the CAD or finite element mesh models automatically. The method is based on the technique of volume morphing pioneered by Sederberg and Parry [Sederberg 1986] and refined in [Sarraga 2004]. Volume morphing reshapes regions of surfaces or meshes by reshaping volumes containing those regions.
Technical Paper

Local Mechanical Property Variations of AZ31B Magnesium Sheet due to Elevated Temperature Forming

2009-04-20
2009-01-0864
The influence of elevated temperature forming on local mechanical properties of AZ31B magnesium (Mg) sheet material was investigated. The Mg sheet was formed into a closure component with high temperature gas pressure at 485°C. Miniature tensile testing specimens were cut from selected areas of the component where different levels of thinning occurred. The specimens were strained in tension to fracture using a miniature tensile stage. The two-dimensional strain distribution in the necking region along with true stress-true strain curves were computed using a digital image correlation technique to assess the influence of the forming-induced thinning on tensile strength and percent elongation at fracture.
Technical Paper

Improved Simulation of Local Necks in Quick Plastic Forming

2008-04-14
2008-01-1441
Two alternative finite element formulations are described which consider the influence of normal stress components on sheet deformations in Quick Plastic Forming [1]. The new formulations, single field bricks and multi-field shells, were implemented in the forming simulation program PAM-STAMP [2] using a non-linear viscoelastic constitutive relation [3,4]. Simulations of two industrial components indicate that both new elements simulate local necking more accurately than the standard shells which ignore normal stresses. The multi-field shells require slightly more calculation time than the standard shells and significantly less than equivalent brick models.
Technical Paper

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-04-16
2007-01-0267
During a new engine development program, or the adaptation of an existing engine to new platform architectures, testing is performed to determine the durability characteristics of the basic engine structure. Such testing helps to uncover High Cycle durability-related issues that can occur at the bulkhead walls as well as cap bolt thread areas in an aluminum cylinder block. When this class of issues occurs, an Elastohydrodynamic (EHD) bearing simulation capability is required. In this study, analytical methods and processes are established to calculate the localized distributed load on the bulkhead. The complexity in performing a system analysis is due to the nonlinear coupling between the bearing hydrodynamic pressure distribution and the crankshaft and block deformation. A system approach for studying the crankshaft-block interaction requires a crankshaft flexible body dynamics model, an engine block assembly flexible body dynamics model and a main bearing lubrication model.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Forming Simulation and Validation of Laminated Steel Panels

2007-04-16
2007-01-1675
Laminated steel has been increasingly applied in automotive products for vibration and noise reduction. One of the major challenges the laminated steel poses is how to simulate forming processes and predict formability severity with acceptable correlation in production environment, which is caused by the fact that a thin polymer core possesses mechanical properties with significant difference in comparison with that of steel skins. In this study a cantilever beam test is conducted for investigating flexural behavior of the laminated steel and a finite element modeling technique is proposed for forming simulation of the laminated steel. Two production panels are analyzed for formability prediction and the results are compared with those from the try-out for validation. This procedure demonstrates that the prediction and try-out are in good agreement for both panels.
Technical Paper

Virtual Manufacturing of Automotive Body Side Outers Using Advanced Line Die Forming Simulation

2007-04-16
2007-01-1688
As a virtual manufacturing press line, line die forming simulation provides a full range math-based engineering tool for stamping die developments of automotive structure and closure panels. Much beyond draw-die-only formability analysis that has been widely used in stamping simulation community during the last decade, the line die formability analysis allows incorporating more manufacturing requirements and resolving more potential failures before die construction and press tryout. Representing the most difficult level in formability analysis, conducting line die formability analysis of automotive body side outers exemplifies the greatest technological challenge to stamping CAE community. This paper discusses some critical issues in line die analysis of the body side outers, describes technical challenges in applications, and finally demonstrates the impact of line die forming simulation on the die development.
Technical Paper

Investigation of the Buoyancy Driven Flow in a Simplified Underhood - Part II, Numerical Study

2006-04-03
2006-01-1607
This paper describes the numerical results for a simplified underhood buoyancy driven flow. The simplified underhood geometry consists of an enclosure, an engine block and two exhaust cylinders mounted along the sides of the engine block. The flow condition is set up in such a way that it mimics the buoyancy driven flow condition in the underhood environment when the vehicle is parked in a windbreak with the engine shut down. The experimental measurements for temperature and velocity of the same configuration were documented in the Part I of the same title. Present study focuses on the numerical issues of calculating temperature and flow field for the same flow configuration. The predicted temperature and velocity were compared with the available measured data. The mesh sizes, mesh type and the orders of spatial and temporal accuracy of the numerical setup are discussed.
Technical Paper

Cylinder Pressure Data Quality Checks and Procedures to Maximize Data Accuracy

2006-04-03
2006-01-1346
Cylinder pressure data is so completely integral to the combustion system development process that ensuring measurements of the highest possible accuracy is of paramount importance. Three main areas of the pressure measurement and analysis process control the accuracy of measured cylinder pressure and its derived metrics: 1) Association of the pressure data to the engine's crankshaft position or cylinder volume 2) Pegging, or referencing, the pressure sensor output to a known, absolute pressure level 3) The raw, relative pressure output of the piezoelectric cylinder pressure sensor Certain cylinder pressure-based metrics, such as mean effective pressures (MEP) and heat release parameters, require knowledge of the cylinder volume associated with the sampled pressure data. Accurate determination of the cylinder volume is dependent on knowing the rotational position of the crankshaft.
Technical Paper

High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications

2006-04-03
2006-01-0605
Durability requirements for exhaust materials have resulted in the increased use of stainless steels throughout the exhaust system. The conversion of carbon steel exhaust flanges to stainless steel has occurred on many vehicles. Ferritic stainless steels are commonly used for exhaust flanges. Flange construction methods include stamped sheet steel, thick plate flanges and powder metal designs. Flange material selection criteria may include strength, oxidation resistance, weldability and cold temperature impact resistance. Flange geometry considerations include desired stiffness criteria, flange rotation, gasket/sealing technique and vehicle packaging. Both the material selection and flange geometry are considered in terms of meeting the desired durability and cost. The cyclic oxidation performance of the material is a key consideration when selecting flange materials.
Technical Paper

Design of a Rapid Prototyping Engine Management System for Development of Combustion Feedback Control Technology

2006-04-03
2006-01-0611
Combustion feedback using cylinder pressure sensors, ion current sensors or alternative sensing techniques is actively under investigation by the automotive industry to meet future legislative emissions requirements. One of the drawbacks of many rapid prototyping engine management systems is their available analog interfaces, often limited to 10-12 bits with limited bandwidth, sampling rate and very simple anti-aliasing filters. Processing cylinder pressure or other combustion feedback sensors requires higher precision, wider bandwidths and more processing power than is typically available. For these reasons, Ricardo in collaboration with GM Research has developed a custom, high precision analog input subsystem for the rCube rapid prototyping control system that is specifically targeted at development of combustion feedback control systems.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Formability Analysis of High Strength Steel Laser Welded Blanks

2005-04-11
2005-01-1326
This paper will describe an investigation of the formability of high strength steel (HSS) laser welded blanks (LWBs). Anticipated combinations of thickness and steel grades, including high strength low alloy (HSLA) and dual phase (DP) steels were selected. The blanks were characterized through chemical analysis and mechanical testing, as well as microstructural analysis of the weld. Samples were strained in a limiting dome height tester. Weld line movement, dome height and strain at failure were then measured. Data from these tests resulted in development of forming limit diagrams, and allowed correlation of weld line movement to forming conditions. In part, the results showed that the presence of the weld has a negative influence on formability, and that balancing the load carrying capacity of each side of the blank results in minimum weld line movement in the blanks.
Technical Paper

Simulation Based Development of Quick Plastic Forming

2005-04-11
2005-01-0088
A computer assisted development technique for Quick Plastic Forming parts [1] is described, based on the simulation program PAM-STAMP [2]. The technique allows thickness changes during forming to be accurately considered in the development process without physical trials. Process pressure cycles, which provide for maximal material formability, can be determined with a single simulation. The paper describes new program features, which reduce modeling effort and increase simulation accuracy. Various validation examples and industrial case studies are also presented, demonstrating current capabilities.
Technical Paper

Integrating Metal Forming With Other Performance Analyses Using a Mapping Strategy

2005-04-11
2005-01-0357
Sheet metal forming processes change the material properties due to work hardening (or softening) in the thickness direction as well as throughout the entire part. At the same time, uneven thickness distribution, mostly thinning, occurs as the result of forming. This is true for all commonly used sheet metal forming processes including stamping (deep drawing), tube hydroforming, sheet hydroforming and super plastic forming. The effects from forming can sometimes strongly influence the structural performance. Though the CAE analysts have been trying to consider forming effect in their models for performance simulations, there was no easy way to do it consistently and reliably. Some analysts have been trying to modify the initial gage or yield strength to compensate for the property change due to forming. Replace the model with the formed panel is not feasible due to the mesh density difference.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
X