Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Impact of Blending Gasoline with Isobutanol Compared to Ethanol on Efficiency, Performance and Emissions of a Recreational Marine 4-Stroke Engine

This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene.
Journal Article

Analysis of Cyclic Variability and the Effect of Dilute Combustion in a Gasoline Direct Injection Engine

The pressing need to improve U.S. energy independence and reduce climate forcing fossil fuel emissions continues to motivate the development of high-efficiency internal combustion engines. A recent trend has been to downsize and turbocharge automotive spark-ignited engines coupled with direct fuel injection to improve engine efficiency while maintaining vehicle performance. In-line with recent trends in state-of-the-art engine technology, the focus of this study is lean and EGR dilute combustion in a gasoline direct injection (GDI) engine. The lean and dilute operating limits are defined by combustion stability typically in terms of COVIMEP so experiments were carried out on an automotive size single-cylinder research engine to characterize combustion stability. From a 20,000 cycle sequence analysis, lean operating conditions exhibit binary high- to low-IMEP cycle sequences. This may be because the cycle-to-cycle feedback mechanisms are physically limited to one or two cycles.
Journal Article

Impact of Cetane Number on Combustion of a Gasoline-Diesel Dual-Fuel Heavy-Duty Multi-Cylinder Engine

Dual-fuel combustion using liquid fuels with differing reactivity has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low soot and NOx emissions, and high indicated efficiency. Varying fractions of gasoline-type and diesel-type fuels enable operation across a range of low- and mid-load operating conditions. Expanding the operating range to cover the full operating range of a heavy-duty diesel engine, while maintaining the efficiency and emissions benefits, is a key objective. With dissimilar properties of the two utilized fuels lying at the heart of the dual-fuel concept, a tool for enabling this load range expansion is altering the properties of the two test fuels - this study focuses on altering the reactivity of the diesel fuel component. Tests were conducted on a 13L six-cylinder heavy-duty diesel engine modified to run dual-fuel combustion with port gasoline injection to supplement the direct diesel injection.