Refine Your Search

Topic

Author

Search Results

Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Journal Article

Internal Nozzle Flow Simulations of the ECN Spray C Injector under Realistic Operating Conditions

2020-04-14
2020-01-1154
In this study, three-dimensional large eddy simulations were performed to study the internal nozzle flow of the ECN Spray C diesel injector. Realistic nozzle geometry, full needle motion, and internal flow imaging data obtained from X-ray measurements were employed to initialize and validate the CFD model. The influence of injection pressure and fuel properties were investigated, and the effect of mesh size was discussed. The results agreed well with the experimental data of mass flow rate and correctly captured the flow structures inside the orifice. Simulations showed that the pressure drop near the sharp orifice inlet triggered flow separation, resulting in the ingestion of ambient gas into the orifice via a phenomenon known as hydraulic flip. At higher injection pressure, the pressure drop was more significant as the liquid momentum increased and the stream inertia was less prone to change its direction.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Technical Paper

Effect of Fast Charging of Lithium-Ion Cells: Performance and Post-Test Results

2016-04-05
2016-01-1194
The effect of charge rate was determined using constant-current (CC) and the USABC Fast-Charge (FC) tests on commercial lithium-ion cells. Charging at high rates caused performance decline in the cells. Representing the resistance data as ΔR vs. Rn-1 plots was shown to be a viable method to remove the ambiguity inherent in the time-based analyses of the data. Comparing the ΔR vs. Rn-1 results, the change in resistance was proportional to charge rate in both the CC and FC cell data, with the FC cells displaying a greater rate of change. Changes, such as delamination, at the anode were seen in both CC and FC cells. The amount of delamination was proportional to charge rate in the CC cells. No analogous trend was seen in the FC cells; extensive delamination was seen in all cases. These changes may be due to the interaction of processes, such as lithium plating and i2R heating.
Journal Article

Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors

2015-09-01
2015-01-1850
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

2014-01-15
2013-01-9092
Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg−1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%.
Technical Paper

Recycling of the Changing Automobile and Its Impact on Sustainability

2011-04-12
2011-01-0853
Over 250 million vehicles are operating on United States roads and highways and over 12 million of them reach the end of their useful lives annually. These end-of-life vehicles (ELVs) contain over 24 million tons (21.8 million metric tonnes) of materials including ferrous and non-ferrous metals, polymers, glass, and automotive fluids. They also contain many parts and components that are still useable and some that could be economically rebuilt or remanufactured. Dismantlers acquire the ELVs and recover from them parts for resale “as-is” or after remanufacturing. The dismantler then sells what remains of the vehicle, the “hulk”, to a shredder who shreds it to recover and sell the metals. Presently, the remaining non-metallic materials, commonly known as shredder residue, are mostly landfilled. The vehicle manufacturers, now more than ever, are working hard to build more energy efficient and safer, more affordable vehicles.
Technical Paper

Impact of Recycling Automotive Lightweighting Materials on Sustainability

2009-04-20
2009-01-0317
A sustainable activity is one that is economically attractive, environmentally friendly and provides a beneficial service to society in a safe and responsible manner. Having a sustainable operation is a target that today’s industries are striving to attain. The automotive industry and its products are major users of natural resources and a source of greenhouse emissions. In order to reduce its energy consumption and greenhouse emissions the industry is using more lightweighting materials in manufacturing its products. These materials include polymers, composites, aluminum and magnesium. The increased interest in hybrid vehicles will increase the need for new materials such as lithium, cobalt and nickel. At the same time, regulations are calling for recycling more of the obsolete vehicles. Replacing the steel, which is recyclable, with lighter materials will result in a reduction in the recycling rate of vehicles unless the lightweighting materials are recycled.
Technical Paper

Modeling of Failure Modes Induced by Plastic Strain Localization in Dual Phase Steels

2008-04-14
2008-01-1114
Microstructure level inhomogeneities between the harder martensite phase and the softer ferrite phase render the dual phase (DP) steels more complicated failure mechanisms and associated failure modes compared to the conventionally used low alloy homogenous steels. This paper examines the failure mode DP780 steel under different loading conditions using finite element analyses on the microstructure levels. Micro-mechanics analyses based on the actual microstructures of DP steel are performed. The two-dimensional microstructure of DP steel was recorded by scanning electron microscopy (SEM). The plastic work hardening properties of the ferrite phase was determined by the synchrotron-based high-energy X-ray diffraction technique. The work hardening properties of the martensite phase were calibrated and determined based on the uniaxial tensile test results. Under different loading conditions, different failure modes are predicted in the form of plastic strain localization.
Technical Paper

Mass Balance and Composition Analysis of Shredder Residue

2007-04-16
2007-01-0527
The process of shredding end-of-life vehicles to recover metals results in a byproduct commonly referred to as shredder residue. The four and a half million metric tons of shredder residue produced annually in the United States is presently land filled. To meet the challenges of automotive materials recycling, the U.S. Department of Energy is supporting research at Argonne National Laboratory in cooperation with the Vehicle Recycling Partnership (VRP) of the United States Council for Automotive Research (USCAR) and the American Plastics Council. This paper presents the results of a study that was conducted by Argonne to determine variations in the composition of shredder residue from different shredders. Over 90 metric tons of shredder residues were processed through the Argonne pilot plant. The contents of the various separated streams were quantitatively analyzed to determine their composition and to identify materials that should be targeted for recovery.
Technical Paper

Technologies for Recycling Shredder Residue

2007-04-16
2007-01-0526
Recovering metals from obsolete automobiles, home appliances, and other metal-containing obsolete durables and other scrap involves shredding these objects and separating the reusable metals from the shredded material by using magnets, eddy current separators, and metal detectors. Over 12 million automobiles are shredded annually in the United States alone, and almost all of the 4.5 million metric tonnes (5 million short tons) of the shredder residue produced in the United States annually is disposed of in landfills. Over 13.6 million tonnes (15 million tons) of shredder residue is generated worldwide every year. The rise in disposal costs is further exacerbated in that the percentage of shredder residue that must be disposed of, in comparison with the percentage of marketable recovered metals, is increasing because of the increasing content of polymers in automobiles and in home appliances.
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Development Process of Shock Waves by Supersonic Spray

2004-03-08
2004-01-1769
A numerical simulation of shock wave generation by high-pressure and high-speed spray jet has been conducted to compare to the experimental results obtained by X-ray radiographic technique. Using the space-time conservation element solution element (CESE) method and the stochastic particle techniques to account for fuel injections and droplet collisions, supersonic-spray-induced shock waves are successfully simulated. Similar to the experimental condition, a non-evaporating diesel spray in a chamber filled with inert gas sulfur hexafluoride (SF6) at 1 atm pressure under room temperature (30° C) is simulated. To simulate the needle lift effect in the single-hole diesel injector, various injection-rate profiles were employed. In addition, the effects of discharge coefficients, with Cd ranging from 0.8 to 1.0, were also considered to simulate the shock generation processes in the leading spray front.
Technical Paper

Development in Lost Foam Casting of Magnesium

2003-03-03
2003-01-0821
Preliminary work was conducted in the casting of magnesium using the lost foam casting process. The lost foam or expendable pattern casting (EPC) process is capable of making extremely complicated part shapes at acceptable soundness levels and with low manufacturing costs. Standard test shapes were used to determine the ability of the magnesium to fill the mold and to assess the types of defects encountered. This paper will briefly explain how this project evolved including the developmental strategies formed, the products selected, the casting trials performed, and the casting results.
X