Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Novel Method for Urea Concentration Deterioration Detection in BSVI Heavy Duty Engine

2024-01-16
2024-26-0154
Diesel Exhaust Fluid (DEF) concentration monitoring is done to detect the concentration at which the emission thresholds are exceeded in BSVI engines [1]. This paper introduces a novel method to model the fault monitoring system with enable conditions designed to detect deterioration in DEF concentration, while reducing misdetection. This eliminates the need for dedicated sensor, reduces complexity, cost, and potential sensor-related failure modes. Traditionally, Diesel Exhaust Fluid quality sensors have been employed to measure the absolute concentration of Diesel Exhaust Fluid in the aqueous solution of urea [2]. This information is used to detect usage of poor quality DEF which results in increase in NOx emission beyond legal limits.
Technical Paper

Prognosis of Engine Failure Based on Modelling by Using Live Parameter Data from Vehicle

2024-01-16
2024-26-0266
In the commercial vehicle business, vehicle availability is a pivotal factor for the profitability of the customer. Nonetheless, the intricate nature of the technologies embedded in modern day engines and exhaust after-treatment systems coupled with the variability of the duty cycles of end applications of the vehicles imposes added challenges on the vehicle's sustained performance and reliability. In this context, the ability to predict potential failures through tools like telematics and real-time data analytics presents a significant opportunity for original equipment manufacturers (OEMs) to deliver distinctive value to their customers.
Technical Paper

Study on Contribution of Bogie Suspension Seating Configurations & V-Rod Forces on Life of Heavy Duty Bogie Rear Axle Casing – Analysis Using Road Simulator

2024-01-16
2024-26-0362
The Heavy Duty live rear axles in commercial vehicle helps to transmit the drive to the rear wheels and also carries vehicle load. The rear axle along with wheel assembly consists of axle casing, differential unit, half shafts, wheel hub, brake drum, brake chamber and wheels. It is one of the major safety critical element in any commercial vehicle. Based on the suspension type, rear axle housing also carries V rod & radius rod mountings & Spring Seat /Wear pad / Rubber Bolster (in case of bogie suspension). This paper abbreviates the contribution of bogie suspension seating configurations & V-rod Forces on life of heavy duty bogie rear axle casing. In-service DRT hot spot observations were reported on heavy duty rear axle on few models with bogie suspension. In order to find the root cause, devising a proper testing and analysis method is of prime importance. An extensive effort was made to device test methodology based on customer application and field visits.
Technical Paper

Optimization of Oil Quantity in Manual Transmission and Reducing Churning Loss

2024-01-16
2024-26-0346
The gearbox is a crucial aggregate in a diesel truck. Gearboxes must work efficiently to get the job done properly and lubrication is vital to this efficiency. Lubricating oil is like the circulation system of a gearbox. If the oil levels fall too low, the gearbox will likely fail. Gearbox failure can lead to expensive repairs that could be prevented. Besides added costs due to replacement or repair, costs associated with a loss of production could be significant. These issues are why; it is important to understand the consequences of having low lubricant levels. Similarly, higher oil level creates higher churning losses, heating of the Gear oil and oxidation, reduction in efficiency and increased oil leaks. Understanding the functions of gearbox lubricating oil can help you choose the right quantity of prevent gearbox failures.
Technical Paper

Real Time Simulation of Various Loads and Validation of Radiator CAC Assembly Used in Commercial Vehicle Engines

2023-05-25
2023-28-1337
Due to the emerging technologies and globalization, expectations of the customers on commercial vehicles are getting increased over the period. It is an important duty of an OEM to deliver a perfectly configured product to suit the customer requirements. When it comes to configuration of a vehicle, engine power is one of the key factors which indicate the performance of that vehicle. There is a tough competition between every OEM to increase the engine power for enhancing the overall operational performance. One method to increase power is to improve its volumetric efficiency. This is achieved with help of turbocharger and Charge Air Cooler (CAC). CAC improves volumetric efficiency by increasing intake air-charge density. Any failure on CAC leads to lower the volumetric efficiency and increase in turbocharger loading. This paper deals with the validation of CAC assembly using different test conditions by analyzing potential failure modes against the field issues.
Technical Paper

Front Axle Kingpin Bush - Evaluation of Wear in Operating Conditions

2021-09-22
2021-26-0473
In automobiles, front axle assembly is a main load bearing member and houses steering linkages. Front axle assembly has two main parts namely axle beam and axle arm, interconnected by a kingpin. This kingpin allows the rotation of axle arm during steering events. To avoid metal to metal contact between axle arm and kingpin, bushes are housed on the top and bottom half of the axle arm & in axle beam. Due to radial load and steering rotation, as a weak member, bushes will wear out faster. This affects the proper functioning of steering mechanism. Hence, the bushes need to be evaluated prior to its implementation in vehicle. In general, bushes are evaluated using Pin-On-Disc test as a comparative study, but it does not simulate exact boundary conditions as in vehicle. Next option is vehicle level validation but leads to more testing time and cost. Hence, as an optimized solution, the same vehicle operating conditions can be replicated in component level testing.
Technical Paper

Failure Analysis and Multi Frequency Swept Sine Testing of Automotive Engine Oil Sump

2019-01-09
2019-26-0354
Automotive business is more focused towards delivering a highly durable and reliable product at an optimum cost. Anything falls short of customer expectation will ruin the manufacturer’s reputation. To exterminate this, all automotive components shall undergo stringent testing protocol during the design validation process. Nevertheless, there are certain factors in the field which cannot be captured during design validation. This paper aims at developing a validation methodology for engine oil sump by simulating field failure. In few of our vehicles, field failure was observed in engine oil sump near the drain plug location. Preliminary analysis was carried out to find the potential causes for failure. Based on the engine test bed results, multi frequency swept sine testing was carried out in laboratory. Field failure was simulated in the lab test and the root causes for failure were found out.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Target Correlation and Allocation Using Reliability Metrics to Validate Design Effectiveness of Improved Sample

2018-04-03
2018-01-0790
All automotive components, systems and vehicles undergo stringent validation protocol standards. Nevertheless, there are certain factors which cannot be captured during validation phase and result in field failures. With multiple players prying for market share in the automotive industry, timely resolution of field failures can go a long way in retaining customer base. In such a scenario, when customer’s tolerance on field failures is very limited, failures need severe attention and must be captured as early as possible to cut down warranty expenses. This project aims at creating a methodology to simulate field failures and validate improved design. The reliability parameters such as β (Shape Factor), η (Scale factor), Reliability and life are estimated and the values are compared between field and lab conditions. Life estimated in field conditions (Failure data base) and lab are correlated using Reliability techniques and target is established for validating improved sample.
Journal Article

Design and Analysis of Lifting Pusher Drop Axle for Heavy Commercial Vehicle

2017-04-11
2017-01-9176
Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
Journal Article

Accelerated Lab Test Methodology for Steering Gearbox Bracket Using Fatigue Damage and Reliability Correlation

2017-04-11
2017-01-9177
In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
Technical Paper

Accelerated Combined Stress Testing of Automotive Head Lamp Relays

2017-03-28
2017-01-0275
As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
Technical Paper

Design and Development of Bimetal Brake Drum to Improve Heat Dissipation and Weight Reduction

2014-09-30
2014-01-2284
Automotive component light weighing is one of the major goals for original equipment manufacturers (OEM's) globally. Significant advances are being made in developing light-weight high performance components. In order to achieve weight savings in vehicles, the OEM's and component suppliers are increasingly using ultra-high-strength steel, aluminum, magnesium, plastics and composites. One way is to develop a light weight high performance component through multi material concept. In this present study, a bimetal brake drum of inner ring cast iron and outer shell of aluminum has been made in two different design configurations. In two different designs, 40 and 26% weight saving has been achieved as compared to conventional gray cast iron brake drum. The component level performance has been evaluated by dynamometer test. The heat dissipation and wear behavior has been analyzed. In both designs, the wear performance of the bimetal brake drum was similar to the gray cast iron material.
Technical Paper

Durability Enhancement of Spring Seat in Bogie Suspension

2013-11-27
2013-01-2848
Spring seat plays major role in bogie suspension; which is guiding and controlling the leaf spring for better suspension and also to withstand the compressive load from leafs. Currently used spring seats are failing frequently in medium and heavy duty vehicles, which lead to customer concerns by higher idle time and part replacement cost. Thickness of the spring seat can't be increased by large extent due to packaging constraints in the vehicle. Stress levels identified by FEA method are found higher than the current material capacity. With these constraints, the spring seat has been re-designed with improved strength and ductility of material by modern technology - Austempered Ductile Iron (ADI). The parts have been developed and assembled in various tipper applications and performance was studied. The developed spring seat shows five times superior durability compare to existing design.
Technical Paper

Durability Analysis of a Bus by Virtual Test Model (VTM)

2013-09-24
2013-01-2378
In this work, durability of the bus structure is evaluated with a Virtual Test Model (VTM).Full vehicle Multi Body Dynamics (MBD) model of the bus is built, with inclusion of flexibility of the bus structure to capture structural modes. Component mode synthesis method is used for creation of flexible model for use in MBD. Load extraction is done by performing MBD analysis with measured wheel inputs. Modal Superposition Method (MSM) is employed in FE along with these extracted loads for calculation of modal transient dynamic stress response of the structure. e-N based fatigue life is estimated. The estimated fatigue life from the modal superposition method show good correlation with the physical test results done in 6-poster test rig.
Technical Paper

Design and Weight Optimization of an Automobile Link - A Case Study

2013-01-09
2013-26-0078
A case study was conducted on the design, optimization and material replacement for an automobile suspension link. The link is part of a four bar mechanism. The mechanism was developed in Adams/Car® and multibody simulation was carried out on it. The joint forces arrived from the simulation were exported for finite element analysis of the components in OptiStruct®. Finally, topology and shape optimization was conducted to reduce the weight of the original component. A feasibility study was also carried out to replace the fabricated steel link with a heat treated cast iron link. Heat treated cast iron being lighter than steel, ensures reduction in weight without compromising on strength. The experiment resulted in a feasible optimized shape which was 32% lighter than the current shape of the link being used in the vehicle, while keeping the stresses and displacements within limits.
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
Technical Paper

Development of a Specific Durability Test Cycle for a Commercial Vehicle Based on Real Customer Usage

2013-01-09
2013-26-0137
Every class of commercial vehicle has an entirely different usage pattern based on customer application and needs. To perform accurate durability testing, these prototypes should run on real customer usage locations and loading conditions for the target life. However, this is time consuming and not practical, hence resulting in Proving Ground (PG) testing. It is also known that a standard PG durability cycle cannot be valid for every class of vehicle and every application. So a statistical approach was followed to develop an accelerated durability test cycle based on in-house PG test surfaces in order to match the real customer usage to the durability target life. This paper summarizes the methodology to develop Durability Validation test cycles for commercial vehicle based on the work carried out on a heavy duty tipper and an intermediate commercial vehicle.
X