Refine Your Search

Topic

Author

Search Results

Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Thermal Analysis of Components and Traces on Printed Circuit Boards

2024-01-16
2024-26-0279
High currents flowing through various traces of a printed circuit boards (PCB) causes thermal run away and PCB warpage due to the occurrence of high heat density. The present study discusses on steady state thermal analysis performed in a PCB kept inside an enclosure. Thermal analysis allows PCB designer to quickly move and confirm the component’s placement by examining the temperature plots predicted on the PCB surface. A PCB particularly designed for automated manual transmission (AMT) application employed in Ashok Leyland electric vehicle (EV) trucks is used for this present study. The performed simulations are preliminary level and carried out with commercially available software Altair Simlab ElectroFlo 2022.3. Simlab is a PCB level EDA (Electronic Design Automation) software suite used for design and analysis, and thus helps in minimizing the development cycles.
Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

Thermal Management of the Li-Ion Battery Pack with Phase Change Material (PCM)

2021-09-22
2021-26-0140
In electric vehicles, Li-ion battery pack is the most expensive subsystem. Therefore, extending the life of the battery pack and thereby reducing the need for battery pack replacement is necessary to offer a viable product at a competitive cost of ownership. Thermal management of battery pack plays an important role in achieving the above mentioned objective since the performance and life of lithium ion batteries is greatly influenced by temperature. There are various thermal management strategies available to keep the temperature under control like air cooling, chilled liquid cooling and hybrid cooling systems. In this paper, a comparison between phase change material (PCM) and PCM/liquid hybrid cooling is made. The result of the study to understand the applicability of PCM for thermal management of Li-ion batteries is presented. CFD thermal analysis under constant electrical load of 1C rate is carried out.
Technical Paper

Bogie Wear Pad - A Comparative Study

2021-09-22
2021-26-0442
Bogie-type suspensions for trucks are comprised of two axles and a central spring pack on each side of the truck chassis. Bogie suspensions have a good load distribution between the axles and are used for severe applications in trucks, in off-road conditions thereby subjecting them to extreme stain and load. In today’s competitive market scenario, it of utmost importance to minimize down time in commercial vehicles as it directly corresponds to loss in business which leads to customer dissatisfaction. It is therefore essential to optimize and select the right material for each component in the bogie suspension system. This paper deals with the material selection and testing of one such component - Bogie Wear Pad. The bogie wear pad undergoes sliding friction throughout its lifetime during loading and unloading of bogie suspension. Three different materials are selected and their wear is measured under the same conditions of loading.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

Operational Deflection Shapes & Resonance Analysis Using Road Simulator

2019-01-09
2019-26-0323
In today’s competitive world to stay in the commercial vehicle business, technological advancement is vital. Understanding the various operation modes of a vehicle considering the vibration becomes essential for developing a vehicle free from failures. ODS analysis is a method which is used to visualise the vibration pattern of a vehicle when influenced by known external operating forces. ODS provide very useful information for understanding and evaluating the behavior of the vehicle. This paper discusses about the experiments carried out in vehicle. It details the process of data collection at varying frequency input, understanding the modes at various frequencies, identifying the resonant frequency of various components, understanding the comparison between road inputs and resonance frequencies and the transfer of vibration (Transmissibility) from one component to another.
Technical Paper

Field Failure Simulation of a Non-reactive Suspension Tie Rod for Heavy Commercial Vehicle Using a Road Simulator

2019-01-09
2019-26-0350
The suspension system in a vehicle isolates the frame and body from road shocks and vibrations which would otherwise be transferred to the passengers and goods. Heavier goods vehicles use tandem axles at the rear for load carrying. Both the axles should be inter-connected to eliminate overloading of any one axle when this goes over a bump or a ditch. One of the inter-connecting mechanism used is leaf spring with tie rod, bell crank & linkages, when the first rear axle moves over a bump, the linkages equalize the loading on the second rear axle. This paper details about the failure analysis methodology to simulate the tie rod field failure using a six poster road simulator and to identify the root cause of the failure and further corrective actions.
Technical Paper

Pass by Noise Reduction on an Intermediate Commercial Vehicle

2018-06-13
2018-01-1535
A major activity of any new vehicle development program, is to meet legal requirements of local markets. Pass by noise (PBN) test is one of the standardized tests and is used to certify new vehicles/variants for their Noise emissions. Certification for noise emissions of commercial vehicles is achieved by measuring external sound levels according to procedures defined by standards such as IS: 3028 for Indian market. Before a physical proto-vehicle is assembled, various systems and subsystems are readily made available by suppliers off the shelf. During final design validation of the vehicle by mule-vehicle testing, PBN target compliance need be assured for all these systems in order to meet overall PBN target. The PBN on an Intermediate commercial vehicle (ICV) migrated to the latest Exhaust emission standard, was the subject of this study. This vehicle emitted PBN greater than accepted threshold.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Performance Prediction of Ethanol Powered Engine Using 1D Thermodynamic Simulation

2017-07-10
2017-28-1958
Bio-fuels potentially represent a more environmentally friendly alternative to fossil fuels as they produce fewer greenhouse gas emissions when burned. Ethanol is one such bio-fuel alternative to the conventional fossil fuels. Towards the initiative of sustainable transportation using alternative fuels, it is attempted to develop an ethanol powered engine for commercial vehicles and this paper attempts to explain the 1D thermodynamic simulation carried out for predicting the engine performance and combustion characteristics, as a part of the engine development program. Engine simulation is becoming an increasingly important engineering tool for reducing the development cost and time and also helps in carrying out various DOE iterations which are rather difficult to be conducted experimentally in any internal combustion engine development program. AVL Boost software is used for modeling and simulation.
Technical Paper

Noise Source Identification and Exterior Noise Reduction of a Commercial Vehicle

2017-07-10
2017-28-1936
Exterior noise reduction of a vehicle has become important nowadays in order to meet the stringent pass by noise regulations. First step in this process is the identification of dominant noise sources. There are several noise sources which can contribute to the pass by noise like gearbox, turbocharger, oil sump, exhaust muffler, air intake etc. The dominant noise sources can be identified with the near field noise, component vibration measurements combined with experimental modal analysis. This paper discusses about the noise source identification and exterior noise reduction of a shortest wheel base intermediate commercial vehicle, which is having a 4-cylinder inline diesel engine.
Technical Paper

Numerical Simulation and Experimental Validation of an Engine Oil Sump for Improved Noise Characteristics

2017-06-05
2017-01-1801
Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid. This paper discusses on the capability of numerical approach in predicting the oil sump modal characteristics with fluid-structure interaction and consequent verification with experimental modal test results.
Technical Paper

A Study on Implementation of Vapour Absorption Air Conditioning System (VAAcS) Using LiBr-H2O in Commercial vehicles

2017-03-28
2017-01-0181
The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
Technical Paper

Remnant Life Estimation of Automotive Components by Resonance Fatigue Method

2017-03-28
2017-01-0387
In today’s commercial vehicle scenario, designing and developing a component which will never fail throughout its lifespan is next to impossible. For a long time especially in the field of automotive, any crack initiation shall deem the component as failed and the design requires further modification. This paper deals with studying the failure of one such component and understanding the effect the crack has on the overall life of the component i.e. understanding the remnant life of the component. The component under study was gear shift lever bracket and is mounted on the engine exhaust manifold. It experiences two types of loads: inertial load due to the engine vibration and gear shift load. Frequent failures were observed in the field and in order to simulate it at lab, an accelerated test approach was adopted. The engine operating speed was used to identify the possible excitation frequency which the component might experience.
Technical Paper

Accelerated Testing by (CSCPV) Combined Systematic Calculated Pre-Validation Method

2017-01-10
2017-26-0319
A full-bodied validation of automotive system emphasis on a comprehensive coverage of failure modes of component on one hand and evaluation with full system for the intended function of single component on the other has for long been cumbersome to most commercial vehicle manufacturers. This paper focuses on optimizing the test method in rig testing to relieve the complexity in the structural validation as whole system level. The methodology proposed by authors focuses on accelerating the vibration testing of component by compressing the validation timelines by using CSCPV (Combined Systematic Calculated and Pre Validation) method. This method selects the components of the system for validation by VFTM (Vital Few and Trivial Many) approach from existing testing database failure data and selects the worst predominant failure cases. This CSCPV method uses systematically calculated representing mass from analysis to validate the intended component alone instead of entire system.
Technical Paper

Effects of Steering System Friction and Jacking Force on On-Center Driving Performance in a Commercial Vehicle

2017-01-10
2017-26-0339
In heavy commercial vehicle segment in India, driver comfort and feel was largely ignored. Fierce competition in the recent years and buyer’s market trend is compelling the designers of heavy truck to focus more on the finer aspects of attribute refinements. Steering is one driver-Vehicle interface which the driver is engaged throughout. Comfort and feel in steering wheel is defined by parameters like steering effort, manoeuvrability, on-center feel & response, cornering feel & response, Torque dead band, return-ability etc. and is influenced by a long list of components and systems in the truck. This study focuses on the influences of jacking torque and steering system friction on the on-center driving performance. Experiments to measure the Jacking torque and steering system friction were conducted in the lab and subjective and objective assessments of on-center driving performance were later conducted at test track in two similar 12 Ton truck to correlate their effects.
Technical Paper

Study on the Effect of Allied Components in the Life of a Parabolic Spring in Passenger Vehicle Application

2017-01-10
2017-26-0313
In today competitive world, gaining customer delight is the most vital part of an automotive business. Customers’ expectations are high which need to be satisfied limitless, to stay in the business. The major expectation of a commercial vehicle customer is a vehicle without failures which involves lower spares cost and downtime. The significance of a suspension system in the new age automobiles is getting advanced. There have been many improvements in the suspension system especially in leaf springs to provide a better ride comfort, and one such modern era implementation is the Parabolic Spring which comprises of fewer leaves with varying thickness from the center to the ends without inter-leaf friction. Study reveals that parabolic spring exhibits better ride comfort, but less life compared to a conventional leaf spring which leads to the increase in downtime of the vehicle.
Technical Paper

Resolution of Engine Oil Mixing with Power Steering Oil in Steering Pump by Behavioral Study

2015-09-29
2015-01-2720
Steering gear box function is one of the important requirements in heavy vehicles in order to reduce driver fatigue. Improper functioning of steering gear box not only increases the driver fatigue, also concerns the safety of the vehicle. In this present investigation, the engine oil mixing up with steering oil has been identified and steering gear box failure has been observed in the customer vehicle. The root cause of failure has been analyzed. Based on the investigations, in particular design of steering pump has been failed at customer end. The same design of steering pump were segregated and analyzed. Initial pressure mapping study has been conducted. The pressure mapping results revealed that the cavity pressure obstructs the flow of suction pressure. It indicates that obstacle at suction port due to the existence of internal leakage that causes back pressure in the internal cavity of steering pump which sucks engine oil.
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
X