Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Correlation Between Euro NCAP Pedestrian Test Results and Injury Severity in Injury Crashes with Pedestrians and Bicyclists in Sweden

2014-11-10
2014-22-0009
Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-to-bicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars.
Journal Article

Headform Impact Tests to Assess Energy Management of Seat Back Contact Points Associated with Head Injury for Pediatric Occupants

2012-04-16
2012-01-0561
Head injuries are the most common injuries sustained by children in motor vehicle crashes regardless of age, restraint and crash direction. Previous research identified the front seat back as relevant contact point associated with head injuries sustained by restrained rear seated child occupants. The objective of this study was to conduct a test series of headform impacts to seat backs to evaluate the energy management characteristics of relevant contact points for pediatric head injury. A total of eight seats were tested: two each of 2007 Ford Focus, Toyota Corolla, 2006 Volvo S40, and 2008 Volkswagen Golf. Five to six contact points were chosen for each unique seat model guided by contact locations determined from real world crashes. Each vehicle seat was rigidly mounted in the center track position with the seatback angle adjusted to 70 degrees above the horizontal.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Journal Article

Validation of a Human Body Model for Frontal Crash and its Use for Chest Injury Prediction

2008-06-17
2008-01-1868
Whole-body kinematics of the finite element human body model THUMS was evaluated by means of sled tests. A model of a crash test dummy (Hybrid-III 50%-ile) was used to validate the test environment by matching the model predictions to the experimentally measured dummy sled test responses. Once the environment was validated, the THUMS model was placed in the sled model and the post mortem human subject (PMHS) sled tests were replicated. Two test configurations were used for the evaluation. One configuration was high impact velocity sled tests with an advanced restraint system. The other configuration was low impact velocity sled tests with a basic restraint system. The test velocities were 48 km/h and 29 km/h respectively. The evaluation was carried out by an objective rating method that compared predictions from the model to results from the mechanical tests. The method assessed the peak level, peak timing and curve shapes of the predictions relative to the test results.
Technical Paper

Whole-body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests

2006-11-06
2006-22-0013
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes.
Technical Paper

Evaluation of lower limb injury mitigation from inflatable carpet in sled tests with intrusion using the Thor Lx

2001-06-04
2001-06-0092
Real-world crash investigations have suggested that lower limb injury risk is increased with the occurrence of toepan intrusion in a frontal collision. In order to more closely evaluate the effects of different modes of toepan intrusion, a rotational and translational intrusion device was built for the test sled at the University of Virginia. Sled tests were performed at a velocity of 56 km/h with a belted Hybrid III occupant and a simulated knee bolster and steering wheel air bag. Lower limb injury risk measures were obtained with Hybrid III and Thor Lx dummy lower extremities. Dummy response variables of interest included tibia axial and shear loads, tibia bending moments, ankle rotations and foot and tibia accelerations. The tests were conducted with no intrusion and with a translational intrusion with a peak deceleration of approximately 175 g's with 14 cm of translation.
Technical Paper

Reduction of Head Rotational Motions in Side Impacts Due to the Inflatable Curtain-A Way to Bring Down the Risk of Diffuse Brain Injury

1998-05-31
986167
Diffuse brain injuries are very common in side impacts, accounting for more than half of the injuries to the head. These injuries are often sustained in less severe side impacts. An English investigation has shown that diffuse brain injuries often originate from interior contacts, most frequently with the side window. They are believed to be mainly caused by quick head rotational motions. This paper describes a test method using a Hybrid III dummy head in a wire pendulum. The head impacts a simulated side window or an inflatable device, called the Inflatable Curtain (IC), in front of the window, at different speeds, and at different impact angles. The inflated IC has a thickness of around 70 mm and an internal (over) pressure of 1.5 bar. The head was instrumented with a three axis accelerometer as well as an angular velocity sensor measuring about the vertical (z) axis. The angular acceleration was calculated.
X