Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

Robot-Based Fast Charging of Electric Vehicles

2019-04-02
2019-01-0869
Automated, conductive charging systems enable both, the transmission of high charging power for long electric driving distances as well as comfortable and safe charging processes. Especially by the use of heavy and unhandy cables for fast charging, these systems offer user friendly vehicle charging - in particularly in combination with autonomously driving and parking vehicles. This paper deals with the definition of requirements for automated conductive charging stations with standard charging connectors and vehicle inlets and the development of a fully-automated charging robot for electric and plug-in hybrid vehicles. In cooperation with the project partners BMW AG, MAGNA Steyr Engineering, KEBA AG and the Institute of Automotive Engineering at Graz University of Technology, the development and implementation of the prototype took place in the course of a governmental funded research project titled “Comfortable Mobility by Technology Integration (KoMoT)”.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Technical Paper

New Approaches to Lube Oil Consumption Measurement Based on the Tracer Method

2019-01-15
2019-01-0077
In the research and development of internal combustion engines, there are several drivers for developing an accurate online lube oil consumption (LOC) measurement system. Lube oil consumption is considered to be a root cause of hydrocarbon and particle emissions and lubricating oil autoignition. It also negatively influences the life cycle cost for engine operators. Highly accurate measurement of lube oil consumption must be possible before it can be reduced - or rather optimized - to levels stakeholders will require in the future. State-of-the-art methods such as gravimetric and volumetric measurements are not fully satisfactory for several reasons. Generally, offline LOC measurement is no longer suitable for fast and accurate measuring cycles, oil condition monitoring and wear monitoring. At present, tracer methods are considered to be the most promising approach. However, current tracer methods have their downsides as well.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
Technical Paper

Artificial Neural Network Based Predictive Real Drive Emission and Fuel Economy Simulation of Motorcycles

2018-10-30
2018-32-0030
As the number of different engine and vehicle concepts for powered-two wheelers is very high and will even rise with hybridization, the simulation of emissions and fuel consumption is indispensable for further development towards more environmentally friendly mobility. In this work, an adaptive artificial neural network based predictive model for emission and fuel consumption simulation of motorcycles operated in real world conditions is presented. The model is developed in Matlab and Simulink and is integrated into a longitudinal vehicle dynamic simulation whereby it is possible to simulate various and not yet measured test cycles. Subsequently, it is possible to predict real drive emissions RDE and on-road fuel consumption by a minimum of previous measurement effort.
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

2018-06-13
2018-01-1543
From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.
Technical Paper

Big Data-Based Driving Pattern Clustering and Evaluation in Combination with Driving Circumstances

2018-04-03
2018-01-1087
Car driver’s behavior and its influence on driving characteristics play an increasing role in the development of modern vehicles, e.g. in view of efficient powertrain control and implementation of driving assistance functions. In addition, knowledge about actual driving style can provide feedback to the driver and support efficient driving or even safety-related measures. Driving patterns are caused not only by the driver, but also influenced by road characteristics, environmental boundary conditions and other traffic participants. Thus, it is necessary to take the driving circumstances into account, when driving patterns are studied. This work proposes a methodology to cluster and evaluate driving patterns under consideration of vehicle-related parameters (e.g. acceleration and jerk) in combination with additional influencing factors, e.g. road style and inclination. Firstly, segmentation of the trip in distance series is performed to generate micro cycles.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels

2017-11-05
2017-32-0070
The development of future internal combustion engines and fuels is influenced by decreasing energy resources, restriction of emission legislation and increasing environmental awareness of humanity itself. Alternative renewable fuels have, in dependency on their physical and chemical properties, on the production process and on the raw material, the potential to contribute a better well-to-wheel-CO2-emission-balance in automotive and nonautomotive applications. The focus of this research is the usage of alcohol fuels, like ethanol and 2-butanol, in motorcycle high power engines. The different propulsion systems and operation scenarios of motorcycle applications in comparison to automobile applications raise the need for specific research in this area.
Journal Article

Advanced Heat Transfer and Underhood Airflow Investigation with Focus on Continuously Variable Transmission (CVT) of Snowmobiles

2017-06-28
2017-01-9180
The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Technical Paper

Analysis of Conventional Motorcycles with the Focus on Hybridization

2016-11-08
2016-32-0031
The release of the “Regulation No. 168/2013” for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (EURO 6) and motorcycles (EURO 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector, hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. This paper describes a methodical approach to analyze conventional motorcycles regarding the energy and power demand for different driving cycles and driving conditions. Therefore, a dynamic or forward vehicle simulation within MATLAB Simulink is used.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Technical Paper

Optimization Approach to Handle Global CO2 Fleet Emission Standards

2016-04-05
2016-01-0904
A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
Technical Paper

The Potential of Key Process/Performance Indicators (KPIs) in Automotive Software Quality Management

2016-04-05
2016-01-0046
A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
X