Refine Your Search

Topic

Search Results

Technical Paper

Incorporating Weld Residual Stress Effects into Fatigue Life Predictions using the Battelle Structural Stress Method

2018-04-03
2018-01-1212
Welding induced residual stresses are an important factor to consider when evaluating fatigue design of welded automotive parts. Fortunately, design engineers have various residual stress mitigation technologies at their disposal for improving the fatigue performance of these parts. For this purpose, it is essential to understand the relationship between the residual stresses and fatigue performance quantitatively as well as qualitatively. It has been widely accepted that tensile residual stresses in welded structures are as high as the material yield strength level. Therefore, the fatigue strength of welded joints is governed predominantly by the applied stress range, regardless of the load ratio. However, in stress relieved components the tensile residual stress level is not as high, and the weld fatigue behavior is more influenced by the load ratio.
Technical Paper

Application of Weld Fatigue Evaluation Procedure for Considering Multi-Axial Stress States Using the Battelle Structural Stress Method

2017-03-28
2017-01-0338
Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
Technical Paper

Fatigue Evaluation Procedure Development for Self-Piercing Riveted Joints Using the Battelle Structural Stress Method

2016-04-05
2016-01-0384
Lightweight, optimized vehicle designs are paramount in helping the automotive industry meet reduced emissions standards. Self-piercing rivets are a promising new technology that may play a role in optimizing vehicle designs, due to their superior fatigue resistance compared with spot welds and ability to join dissimilar materials. This paper presents a procedure for applying the mesh-insensitive Battelle Structural Stress Method to self-piercing riveted joints for fatigue life prediction. Additionally, this paper also examines the development of an interim fatigue design master S-N curve for self-piercing rivets. The interim fatigue design master S-N curve accounts for factors such as various combinations of similar and dissimilar metal sheets, various sheet thicknesses, stacking sequence, and load ratios. A large amount of published data was collapsed into a single interim S-N curve with reasonable data scattering.
Technical Paper

Fatigue Evaluation Procedure Development for Aluminum Alloy Spot Welds Using the Battelle Structural Stress Method

2015-04-14
2015-01-0545
As the automotive industry seeks to remove weight from vehicle chasses to meet increased fuel economy standards, it is increasingly turning to composites and aluminum. In spite of increasing demands for quality aluminum alloy spot welds that enable more fuel efficient automobiles, fatigue evaluation procedures for such welds are not well-established. This article discusses the results of an evaluation Battelle performed of the fatigue characteristics of aluminum alloy spot welds based on experimental data and observations from the literature. In comparison with spot welds in steel alloys, aluminum alloy spot welds exhibit several significant differences including a different hardness distribution at and around the weld, different fatigue failure modes, and more. The effectiveness and applicability of the Battelle structural stress-based simplified procedure for modeling and simulating automotive spot welds has previously been demonstrated by Battelle investigations.
Journal Article

Development of Friction Stir Weld Fatigue Evaluation Procedure Using Battelle Structural Stress Method

2014-04-01
2014-01-0909
Weld fatigue evaluation using the mesh-insensitive Battelle structural stress method has been applied to fusion welds, resistance spot welds and non-welded components. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. In this paper, a weld fatigue evaluation procedure using the Battelle structural stress method is proposed for friction stir welds currently being used in the automotive and aerospace industries. The applicability of the Battelle structural stress procedure is demonstrated by comparing fatigue life predictions for friction stir welded specimens to well-documented test data from the literature. Different specimen types, plate thicknesses and loading ratios were analyzed for several aluminum alloys.
Journal Article

Fatigue Evaluation of Notched Plate Specimens by the Battelle Structural Stress Method

2013-04-08
2013-01-1011
In this paper, the applicability of the finite element-based, mesh insensitive Battelle structural stress method is demonstrated for fatigue life predictions of notched specimens (non-welded) with different specimen types, and notch shapes. Well-documented notch fatigue data were analyzed using the Battelle structural stress fatigue evaluation procedure, including notched plate fatigue data for steel and aluminum alloys. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. Here, a similar Battelle structural stress procedure suitable for finite element modeling and service life simulations is proposed for structures with notches. Unlike weld fatigue data, the crack propagation portion of the fatigue life associated with a notch does not always dominant the total number of cycles to failure.
Journal Article

The Development of a Simplified Spot Weld Model for Battelle Structural Stress Calculation

2011-04-12
2011-01-0479
The nodal force based Battelle structural stress method has shown its mesh insensitivity in the stress analysis of spot welds as well as fusion welds. In the conventional structural stress simulation procedure, the structural stress is calculated at the nodes along the nugget periphery. However, implementing a nugget into each spot weld is cumbersome and time consuming not only in preparing mesh for FE analysis but also in preparing a series of structural stress calculation after finishing the FE analysis. Therefore, the efficiency of the current Battelle structural stress practice for spot welds can be improved significantly for structures with a large number of spot welds. The simplified modeling procedure presented here delivers reliable structural stresses at spot welds and these stresses can then be utilized for fatigue life prediction using a master S-N Curve approach that is applicable to wide range of spot welding techniques.
Technical Paper

Fuel Chemistry Impacts on Gasoline HCCI Combustion with Negative Valve Overlap and Direct Injection

2007-10-29
2007-01-4105
Homogeneous Charge Compression Ignition (HCCI) combustion has the potential to produce low NOx and low particulate matter (PM) emissions while providing high efficiency. In HCCI combustion, the start of auto-ignition of premixed fuel and air depends on temperature, pressure, concentration history during the compression stroke, and the unique reaction kinetics of the fuel/air mixture. For these reasons, the choice of fuel has a significant impact on both engine design and control strategies. In this paper, ten (10) gasoline-like testing fuels, statistically representative of blends of four blending streams that spanned the ranges of selected fuel properties, were tested in a single cylinder engine equipped with a hydraulic variable valve train (VVT) and gasoline direct injection (GDI) system.
Technical Paper

Survey of Potential Safety Issues with Hydrogen-Powered Vehicles

2006-04-03
2006-01-0327
Hydrogen-powered vehicles offer the promise of significantly reducing the amount of pollutants that are expelled into the environment on a daily basis by conventional hydrocarbon-fueled vehicles. While very promising from an environmental viewpoint, the technology and systems that are needed to store the hydrogen (H2) fuel onboard and deliver it to the propulsion system are different from what consumers, mechanics, fire safety personnel, the public, and even engineers currently know and understand. As the number of hydrogen vehicles increases, the likelihood of a rollover or collision of one of these vehicles with another vehicle or a barrier will also increase.
Technical Paper

Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20)

2005-11-01
2005-01-3641
Biodiesel has been used to reduce petroleum consumption and pollutant emissions. B20, a 20% blend of biodiesel with 80% petroleum diesel, has become the most common blend used in the United States. Little quantitative information is available on the impact of biodiesel on engine operating costs and durability. In this study, eight engines and fuel systems were removed from trucks that had operated on B20 or diesel, including four 1993 Ford cargo vans and four 1996 Mack tractors (two of each running on B20 and two on diesel). The engines and fuel system components were disassembled, inspected, and evaluated to compare wear characteristics after 4 years of operation and more than 600,000 miles accumulated on B20. The vehicle case history-including mileage accumulation, fuel use, and maintenance costs-was also documented. The results indicate that there was little difference that could be attributed to fuel in operational and maintenance costs between the B20- and diesel-fueled groups.
Technical Paper

Vapor Pressures of Diesel Fuel Oxygenate Blends

2002-10-21
2002-01-2850
A gas chromatographic technique was used to determine the vapor pressures of blends of six candidate diesel fuel oxygenates with three diesel fuels at 0, 5, 10, 30, and 100 percent blend levels. Both the oxygenates and the diesel fuels were selected to represent a variety of chemical compositions. The vapor pressures were determined over a range of temperatures from -30 C to +30 C. In each case the fraction of the vapor pressure derived from the oxygenate and the fuel was identified. The vapor pressure results showed that there were significant deviations from ideality, leading to both higher and lower vapor pressures than would be predicted from Raoult's Law. These results are significant for fire safety and evaporative emissions as well as for a more basic understanding of the behavior of these blends. Data were also obtained on the heats of vaporization for each of the blends.
Technical Paper

Oxygenate Compatibility with Diesel Fuels

2002-10-21
2002-01-2848
Miscibility, water tolerance, cloud point, and flash point data are presented for seven candidate diesel fuel oxygenates: dipentyl ether, dibutoxymethane, 2-ethoxyethyl ether, diethyl maleate, tripropylene glycol monomethyl ether, dibutyl maleate, and glycerol tributrate. These oxygenates were blended with three different diesel fuels: an oil sands diesel, an ultra-low sulfur diesel, and a Fischer-Tropsch diesel. Blend levels included 0, 5, 10, 30, and 100 % oxygenate. Properties were measured at temperatures of -30, -15, 0, 15, and 30 C.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
Technical Paper

Statistical Issues in the Evaluation of the Impact of Sulfur in Diesel Fuel on the Performance of Diesel Particulate Filter Emission Control Devices

2000-06-19
2000-01-1958
The Diesel Emission Control - Sulfur Effects (DECSE) program is a joint U.S. government/industry program that studies the impact of diesel sulfur levels on four types of emission control systems. One type of system, Diesel Particulate Filters (DPF), removes particulate matter (PM) from the exhaust stream by collection on a filter. The critical operating issue for DPF technology is the cleaning or regeneration of the control device (by oxidation of the collected PM) to prevent plugging. However, oxidation of sulfur in the exhaust forms sulfates, which are measured as PM. Two types of tests are conducted to evaluate the impacts of fuel sulfur on DPF performance: (1) emissions tests for PM components and gases, and (2) experiments to measure the effect of fuel sulfur on the regeneration temperature required by the filter devices.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Technical Paper

Fleet Test Using Butane and Propane Mixtures

1998-10-19
982444
This paper describes the results of a liquefied petroleum gas (LPG) fleet test conducted using para-transit, medium-duty vehicles. The vehicles were part of an active municipal fleet providing daily service on varying operating routes. Over a period of nine months, each vehicle was fueled with a series of butane/propane mixtures. The mixtures tested were HD5 LPG as the baseline fuel, 20 percent butane/80 percent propane, 30 percent butane/70 percent propane, and a final blend of 50 percent butane/50 percent propane by volume. The test vehicles showed improved fuel economy as the butane content increased in the fuel mixture, even without modification to existing LPG fuel systems. The improved fuel performance was consistent with the higher energy content of butane, compared to an equal volume of propane. The vehicles displayed no symptoms of performance or maintenance problems that would be related to operation of the fuel mixtures.
Technical Paper

Characterization of Nugget Development under Electrode Wear Conditions in Resistance Spot Welding

1998-09-29
982363
The effects of electrode wear on nugget development during resistance spot welding are major concerns in auto-body assembly and manufacturing. By considering detailed electrode-sheet interactions using advanced finite element modeling procedure, this paper presents a framework for detecting the electrode wear conditions and associated nugget development characteristics. Two important in-process parameters are studied in detail. They are the electrode movement and the dynamic resistance. It is found that the second-order derivative of the electrode movement and the first-order derivative of the dynamic resistance can be correlated in a fundamental form to identify the detailed nugget development process under various electrode wear conditions.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
X