Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study on the Interaction of Clearance Flow and Shock Wave in a Turbine Nozzle

2017-03-28
2017-01-1039
Radial flow Variable Nozzle Turbine (VNT) enables better matching between the turbocharger and engine. At partial loading or low-end engine operating points, the nozzle vane opening of the VNT is decreased to achieve higher turbine efficiency and transient response, which is a benefit for engine fuel consumption and emission. However, under certain small nozzle opening conditions (such as nozzle brake and low-end operating points), strong shock waves and strong nozzle clearance flow are generated. Consequently, strong rotor-stator interaction between turbine nozzle and impeller is the key factor of the impeller high cycle fatigue and failure. In present paper, flow visualization experiment is carried out on a linear turbine nozzle. The turbine nozzle is designed to have single-sided clearance, and the Schlieren visualization method is used to describe the formation and development process of clearance flow and shock wave under different clearance and expansion ratio configurations.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
X