Refine Your Search

Topic

Author

Search Results

Technical Paper

Hollow Shaft Liquid Cooling Method for Performance Improvement of Permanent Magnet Synchronous Motors Used in Electric Vehicles

2023-09-22
2023-01-5067
Operating condition of rotor embedded magnet materials for permanent magnet synchronous motor (PMSM) critically affect electric vehicle (EV) range and dynamic characteristics. The rotor liquid cooling technique has a deep influence on PMSM performance improvement, and begin to be studied and applied increasingly in EV field. Here, the fluid, thermal, and electromagnetic characteristics of motor with and without hollow-shaft cooling are researched comprehensively based on 100 kW PMSM with housing water jacket (HWJ) and hollow-shaft rotor water jacket (SWJ). The solid models are constructed considering temperature-dependent power loss and anisotropic thermal conductivity. After the fluid models are set up by using Reynolds stress model (RSM), conjugate heat transfer is conducted through computational fluid dynamics (CFD) simulation, and is verified by real PMSM test bench experiments.
Technical Paper

Fluid-Solid Coupled Heat Transfer Investigation of Wet Clutches

2017-10-08
2017-01-2442
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Technical Paper

Research on Temperature Stability of an Independent Energy Supply Device with Organic Rankine Cycles Based on Hydraulic Retarder

2017-09-22
2017-01-7003
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
Technical Paper

Model Predictive Control for Engine Powertrain Thermal Management Applications

2015-04-14
2015-01-0336
Numerous studies describe the fuel consumption benefits of changing the powertrain temperature based on vehicle operating conditions. Actuators such as electric water pumps and active thermostats now provide more flexibility to change powertrain operating temperature than traditional mechanical-only systems did. Various control strategies have been proposed for powertrain temperature set-point regulation. A characteristic of powertrain thermal management systems is that the operating conditions (speed, load etc) change continuously to meet the driver demand and in most cases, the optimal conditions lie on the edge of the constraint envelope. Control strategies for set-point regulation which rely purely on feedback for disturbance rejection, without knowledge of future disturbances, might not provide the full fuel consumption benefits due to the slow thermal inertia of the system.
Technical Paper

Dynamic Analysis of Wiper System and Noise Prediction of Blade Reverse

2015-03-30
2015-01-0106
Wiper noise generated in the wiping process is one of the main influence factors affecting the driving comfort. Since the dynamic contact pressure of the contact between a blade and a windshield glass is difficult to be measured, it is also difficult to predict the degree of the wiper noise. In this paper, in the view of the reversal noise problem of a passenger-vehicle windscreen wiper system, the system dynamic models of the both wipers on the sides of the driver and copilot were built as considering the blade deformation and the elastic contact between the blades and the windscreen glass, including the crank pivot, the four linkage mechanism, the wiper blades, the wiper arms and the windscreen glass. The motion of the wiper system and the pressure distributions between the blades and the windscreen glass were analyzed under the half-dry condition.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Technical Paper

Estimation of Controllability Based on Driver Behavior - A Case of Insufficient Brake-Assist Force

2014-04-01
2014-01-0236
Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). C is classified qualitatively in ISO 26262. However, no specific method for classifying C is described. It is useful for C classification to define a specific classification based on objective data. This study assumed that C was classified using the percentage of drivers who could reduce Severity (S) in one or more classes compared with the S class in which the driver did not react to a hazardous event. An experiment simulated a situation with increased risk of collision with a leading vehicle due to insufficient brake force because of brake-assist failure when the experiment vehicle decelerated from 50 km/h on a straight road.
Technical Paper

A Transportable Instrumentation Package for In-Vehicle On-Road Data Collection for Driver Research

2013-04-08
2013-01-0202
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

Assessment Method of Effectiveness of Passenger Seat Belt Reminder

2012-04-16
2012-01-0050
Seat belts for rear passengers are not commonly used, even though they can significantly reduce fatalities. A passenger seat belt reminder (PSBR) is installed in order to encourage seat belt use, but the effectiveness of PSBRs on the rear seat passenger has not yet been proven. We have developed a methodology to assess PSBR effectiveness. There are two pathways to encourage seat belt use. The first is that PSBR directly facilitates the passenger's use. The second is to motivate the driver request passengers to use seat belts. In the experiment, we asked participants sitting in the driver's seat to select one of five ranks of likelihood to encourage the passenger when a PSBR was presented. We also asked participants sitting in the rear passenger seat to select the rank of likelihood to use the belt voluntarily with PSBR and that to use the belt when the driver requested. The degree of likelihood was quantified by averaging the assigned percentage values to the ranks.
Technical Paper

Development of Electric Commuter Concept Car “C-ta”

2011-05-17
2011-39-7220
It is becoming more and more necessary to achieve a sustainable low-carbon society by mobility not depending on oil. Electric vehicles are appropriate for such a society, but expensive battery cost and long charging time prohibit the promotion of EVs. One of the solutions is minimizing battery usage by ultra-low fuel efficiency, so we developed an ultrahigh-efficient electric commuter concept car “C-ta”, which requires as small a battery as possible. We assumed that drivers would use the car as a second car for short-distance daily use, such as commuting, shopping, transportation of family, etc. In order to improve fuel efficiency, we mainly considered an ultra-light weight body and chassis, to which CFRP (carbon fiber reinforced plastic) greatly contributes, ultra-low rolling resistance tires, and highly accurate vehicle control technology with four in-wheel motors.
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Empirical Approach to Risk Factors in Rear End Collisions at Intersections - Effect of Lead Vehicle Behaviour on Premature Decisions of the Following Driver -

2010-04-12
2010-01-1014
Naturalistic driving data has been accumulated by driving data recorders to understand factors that contribute to collisions. Among the rear end conflicts at signalized intersections in the data, conflict data between the following vehicles and suddenly stopping lead vehicles were frequently observed just after their start. To investigate the following drivers' behavior in a realistic driving situation without collision danger, an instrumented vehicle equipped with a liquid-crystal display ahead of the windshield was developed, and an experiment reproducing such conflict on the display was conducted. It was found that a lead vehicle's rapid start (2.8 m/s₂ on average) before quitting its right turn caused the following vehicle's brake reaction time to be longer than a slow start (0.8 m/s₂ on average) did. This result suggests that a following driver's premature decision to start rapidly increases the risk of rear end collisions.
Technical Paper

Climate control system improvements for better cabin environmental conditions and reduction of fuel consumption

2007-11-28
2007-01-2673
Since the beginning the world automotive industry looks for new technologies to improve the passengers' life inside vehicles, to optimize the consumption of fuel and to minimize the emission of pollutant. In the present study improvements in the vehicle acclimatization system for better cabin environmental conditions and reduction of fuel consumption were accomplished. The study included improvements in the air chamber and in the refrigeration cycle and was accomplished in a off-road vehicle model, with a bi-fuel engine of 1600 cm3, endowed with an acclimatization system with capacity of 1 TR (usual in this type of automobile). The tests of the acclimatization system performance were executed initially with the conventional system of air conditioning, without any modification (reference system). Along the development of the work modifications were introduced for the determination of the impact of these modifications in the system performance.
Technical Paper

Effect of Initial Residual Stress on Crack Initiation from Tiny Holes of Brake Discs for Motorcycles

2007-10-07
2007-01-3952
The purpose of this study is to clarify how the residual stress determined by the configuration of weight reduction holes affects the crack initiation in the brake discs for large motorcycles under the over loading condition. Two kinds of test samples of the one-piece type brake disc were used where the configuration of the weight reduction holes were different. The test result showed that the crack initiation life was significantly changed due to the configuration of weight reduction holes. The 3D FEM results of heat transfer and thermal stress analysis explained that the stress relaxation was dependent on the configuration of weight reduction holes of the disc because the initial thermal stress was directly determined by the simple stress distribution around each hole. This study confirmed that the configuration of weight reduction holes plays a decisive role in determining the design of the brake disc.
Technical Paper

Effects of Hands-free Phone Conversation on Visual Behavior: Dissociation of Binocular Gaze Point as an Index of Inattention

2005-04-11
2005-01-0439
Effects of hands-free phone conversations on drivers' visual behavior and detection performance were examined using a gaze-tracking device and fixed-based driving simulator. The participants engaged in various conversation tasks (simple/arithmetic/unconstrained) while following a lead vehicle. The results indicated that hands-free-phone conversations, even if the contents are not subjectively demanding, can affect a driver's visual behavior. The increment of binocular gaze dissociation induced by conversing on a phone indicates that a driver's attention is diverted from the external scenery to the conversation. Furthermore, this observed dissociation of binocular gaze may represent a resting position, which is revealed only when binocular fusion is disrupted by occluding one eye.
Technical Paper

Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering

2004-03-08
2004-01-1107
Electric Power-Assisted Steering (EPAS) is a new power steering technology that will define the future of vehicle steering. The assist of EPAS is the function of the steering wheel torque and vehicle velocity. The assist characteristic of EPAS is set by control software, which is one of the key issues of EPAS. The straight-line type assist characteristic has been used in some current EPAS products, but its influence on the steering maneuverability and road feel hasn't been explicitly studied in theory. In this paper, the straight-line type assist characteristic is analyzed theoretically. Then a whole vehicle dynamic model used to study the straight-line type assist characteristic is built with ADAMS/Car and validated with DCF (Driver Control Files) mode of ADAMS/Car. Based on the whole vehicle dynamic model, the straight-line type assist characteristic's influence on the steering maneuverability and road feel is investigated.
Technical Paper

Evaluation of Passenger Compartment Strength in Car-to-Car Frontal Crashes

2003-03-03
2003-01-0909
The strength of the passenger compartment is crucial for occupant safety in severe car-to-car frontal offset collisions. Car-to-car crash tests including minicars were carried out, and a low end of crash force was observed in a final stage of impact for cars with large intrusion into the passenger compartment. From overload tests, the strength could be evaluated from collapsing the passenger compartment. Based on the test, the end of crash force as well as the maximum forces might be important criteria to determine the passenger compartment strength, which in turn could predict the large intrusion into the passenger compartment in car-to-car crashes. A 64 km/h ODB test was insufficient to evaluate the potential strength of the passenger compartment because the maximum forces could not be determined in this test.
Technical Paper

J-NCAP: Today and tomorrow

2001-06-04
2001-06-0157
The New Car Assessment Program in Japan (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash tests are published every year. Introduction of JNCAP significantly increases the installation rate of safety devices and contributes much in enhancement of safety as seen in the decrease in the average injury severity of drivers and passengers. Side impact and offset frontal crash tests were introduced in 1999 and 2000, respectively. At present, the overall crash safety rating is carried out based on the results of the full-frontal, offset frontal, and side impact tests.
X