Refine Your Search


Search Results

Viewing 1 to 12 of 12
Journal Article

Study on Repeated-Root Modes in Substructure Modal Composition Analysis

The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
Technical Paper

Fluid Structure Interaction Simulations Applied to Automotive Aerodynamics

One of the passive methods to reduce drag on the unshielded underbody of a passenger road vehicle is to use a vertical deflectors commonly called air dams or chin spoilers. These deflectors reduce the flow rate through the non-streamlined underbody and thus reduce the drag caused by underbody components protruding in to the high speed underbody flow. Air dams or chin spoilers have traditionally been manufactured from hard plastics which could break upon impact with a curb or any solid object on the road. To alleviate this failure mode vehicle manufacturers are resorting to using soft plastics which deflect and deform under aerodynamic loading or when hit against a solid object without breaking in most cases. This report is on predicting the deflection of soft chin spoiler under aerodynamic loads. The aerodynamic loads deflect the chin spoiler and the deflected chin spoiler changes the fluid pressure field resulting in a drag change.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

NVH Improvement of Vehicle Powertrain

This paper provides an investigation to improve vehicle powertrain NVH performance via modification of excitation and radiation system of powertrain. First of all, considering different excitation mechanisms of the powertrain, the excitation forces are analyzed. The FEM/BEM coupled analysis and the acoustic transfer vector (ATV) calculation as well as panel contribution analysis are applied to investigating the acoustic characteristics of the powertrain. Then a hybrid approach which couples the transmission gear profile modification for attenuating gear system excitation and the transmission housing modification for reducing transmission housing noise radiation is proposed to improve powertrain NVH performance. Experiment validation is conducted in order to assess the modified results. The assessment shows that this hybrid approach can effectively predict and reduce powertrain noise and vibration.
Technical Paper

Prediction of Structural Acoustic Radiation for Compressor Considering Airflow Pulsed Load

A coupled vibro-acoustic of a compressor modeling process was demonstrated for predicting the acoustic radiation from a vibrating compressor structure based on dynamic response data. FEM based modal analysis of the compressor was performed and the result was compared with experimental data, for the purpose of validating the FE model. Modal based force response analysis was conducted to calculate the compressor's surface vibration velocity on radiating structure, using the load which caused by mechanical excitation as input data. In addition, due to the coolant had oscillating gas pressure, the gas pulsed load was also considered during the dynamic response analysis. The surface vibration velocity solution of the compressor provided the necessary boundary condition input into a finite element/boundary element acoustic code for predicting acoustic radiation.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Journal Article

Measurement of r-values of High Strength Steels Using Digital Image Correlation

The r-value is a very important parameter in the forming simulations of high strength steels, especially for steels with prominent anisotropy. R-values for sheet steels conventionally measured by extensometers were found neither consistent nor accurate due to difficulties in measuring the width strain. In this study, the Digital Image Correlation (DIC) technique was applied to determine r-values in Longitudinal (L), Transverse (T) and Diagonal (D) directions for cold rolled DP980 GI, DP780 GI, DP600 GI and BH250 GI sheet steels. The r-values measured from DIC were validated by finite element analysis (FEA) of a uniaxial tensile test for BH250. The simulation results of the load-displacement for two plasticity models were compared to experimental data, with one being the isotropic yield (von-Mises) and the other being an anisotropic model (Hill-48) using the r-value measured from DIC.
Technical Paper

Modal Analysis of an Internal Combustion Engine with Finite Element Method based on Contact Calculation

Contact dynamic characteristics of an internal combustion engine structure were studied by the finite element method and experimental verification. Based on theoretical analysis, contact modal calculation of an internal-combustion engine with finite element method is carried out by the ADINA software. Dynamic behavior of the entire engine structure was investigated. Rigid bar connection and coupling connection were introduced for the purpose of comparison with contact analysis and experiment results. The experimental results are in good agreement with the theoretical analysis and FEM results. From the study, it can be demonstrated that dynamic behavior of the engine structure with a large preload shows linear characteristics. Compared with the other models, the procedure presented in this paper is more effective and useful in view of operational time and experience of analysts.
Technical Paper

Rigidity and Strength Analysis and Structure Optimization of one Electric Tractor's Frame Based on FEA

In this paper, the finite element model for static analysis of an electric tractor's frame is presented firstly, and the rigidity and strength of one electric tractor's frame is calculated. Based upon the analysis results, the topology and shape of this electric tractor's frame is optimized. As to the topology optimization, the optimization goal under multiple load cases is defined and the frame is optimized by two steps-one is to determine the position of the transverse rails using solid elements which can simulate the material-filling space, another is to obtain the shape of the frame in which shell elements are applied as to increase the calculation efficiency. After the topology optimization the frame's stiffness is improved significantly but there still is local stress concentration. So the shape of the stress concentration area is optimized using control points method, and the greatest stress is reduced below the strength limits.
Technical Paper

Effectiveness of Polyurethane Foam in Energy Absorbing Structures

Future vehicle safety, performance and fuel economy objectives make the development of new materials, concepts and methods of crash energy management desirable. The technique of foam filling structural rails for increased energy absorption was investigated as one such concept. A fractional factorial test program was established to evaluate the weight effectiveness of polyurethane foam as an energy absorber and stabilizer. The experiment provided the quantitative effects of design parameter, varability of results and statistical significance of each parameter with regard to crash characteristics. High density foam was found to be weight effective as a structural reinforcement, but not as an energy absorber. Medium density foam improves the energy absorption of a section. Equivalent energy, however, can be absorbed more weight effectively by changing the metal thickness or the section size.
Technical Paper

Ford “S” Frame

Since statistics indicate that front impact is the major accident type, Ford has been studying energy-absorbing structures for some time. Early designs such as the “ball and tube” and “rail splitter” were discarded in favor of the “S” frame. Details of the design approach and testing are given in this paper. Design objectives were increased effective collapse distance, compatibility with production practices, and maintenance of satisfactory noise, vibration, and harshness levels. Safety objectives are improved passenger compartment integrity and reduction of seat belt loads. Barrier crash tests at 30 mph (equivalent to collision into standing vehicle at 50 mph) were used to evaluate the design of the “S” frame. Results of testing indicate that occupant restraint with seat belts, combined with front end structural improvements, offer the most promise for injury reduction during service front impact accidents.