Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Very High Cycle Fatigue of Cast Aluminum Alloys under Variable Humidity Levels

2015-04-14
2015-01-0556
Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
Technical Paper

Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component

2015-04-14
2015-01-0533
In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency. It is found that the implemented Chaboche model is generally more computationally efficient than Sehitoglu model, though they are almost identical in regard to accuracy.
Technical Paper

Effect of Temperature Cycle on Thermomechanical Fatigue Life of a High Silicon Molybdenum Ductile Cast Iron

2015-04-14
2015-01-0557
High silicon molybdenum (HiSiMo) ductile cast iron (DCI) is commonly used for high temperature engine components, such as exhaust manifolds, which are also subjected to severe thermal cycles during vehicle operation. It is imperative to understand the thermomechanical fatigue (TMF) behavior of HiSiMo DCI to accurately predict the durability of high temperature engine components. In this paper, the effect of the minimum temperature of a TMF cycle on TMF life and failure behavior is investigated. Tensile and low cycle fatigue data are first presented for temperatures up to 800°C. Next, TMF data are presented for maximum temperatures of 800°C and minimum cycle temperatures ranging from 300 to 600°C. The data show that decreasing the minimum temperature has a detrimental effect on TMF life. The Smith-Watson-Topper parameter applied at the maximum temperature of the TMF cycle is found to correlate well with out-of-phase (OP) TMF life for all tested minimum temperatures.
Journal Article

Correlation between Scatter in Fatigue Life and Fatigue Crack Initiation Sites in Cast Aluminum Alloys

2012-04-16
2012-01-0920
High cycle fatigue tests at a constant positive mean stress have been performed on a Al-Si-Cu cast aluminum alloy. The Random Fatigue Limit (RFL) model was employed to fit the probabilistic S-N curves based on Maximum Likelihood Estimate (MLE). Fractographic studies indicated that fatigue cracks in most specimens initiate from oxide films located at or very close to specimen surface. The RFL model was proved to be able to accurately capture the scatter in fatigue life. The cumulative density function (CDF) of fatigue life determined by RFL fit is found to be approximately equal to the complementary value of the CDF of the near-surface fatigue initiator size.
X